Test Installation of a Marker-Based Framework for Structural Health Monitoring of Bridges

2013 ◽  
Vol 477-478 ◽  
pp. 813-816
Author(s):  
Milán Magdics ◽  
Ruben Jesus Garcia ◽  
Voravika Wattanasoontorn ◽  
Mateu Sbert

Regular health monitoring of bridges is a vital process to prevent serious structural damage. Marker-based systems, which follow the trajectory of objects by placing a well-characterized pattern on their surface and identify them on photos or videos taken of these objects, have proven to be a cheap and flexible alternative for such tasks. In this work, we extend our previous laboratory implementation with a low-cost, fully automatic on-site installation at the bridge at Arosa Island, Galicia, Spain. Preliminary results presented in this paper show that our system is highly robust for the harsh climate of the installation site.

Author(s):  
Howard A. Winston ◽  
Fanping Sun ◽  
Balkrishna S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.


2000 ◽  
Vol 123 (2) ◽  
pp. 353-358 ◽  
Author(s):  
H. A. Winston ◽  
F. Sun ◽  
B. S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.


2017 ◽  
Vol 17 (3) ◽  
pp. 654-667 ◽  
Author(s):  
Leandro M Campeiro ◽  
Ricardo ZM da Silveira ◽  
Fabricio G Baptista

The electro-mechanical impedance technique has been extensively studied in recent decades as a non-destructive method for detecting structural damage in structural health monitoring applications using low-cost piezoelectric transducers. Although many studies have reported the effectiveness of this detection method, numerous practical problems, such as the effects of noise and vibration, need to be addressed to enable this method’s effective use in real applications. Therefore, this article presents an experimental analysis of noise and vibration effects on structural damage detection in impedance-based structural health monitoring systems. The experiments were performed on an aluminum bar using two piezoelectric diaphragms, where one diaphragm was used to measure the electrical impedance signatures and the other diaphragm was used as an actuator to generate noise and controlled vibration. The effects of noise and vibration on impedance signatures were evaluated by computing the coherence function and basic damage indices. The results indicate that vibration and noise significantly affect the threshold of the lowest detectable damage, which can be compensated by increasing the excitation signal of the piezoelectric transducer.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yabin Liang ◽  
Yixuan Chen ◽  
Zuocai Zhang ◽  
Qian Feng

Electromechanical impedance (Electromechanical impedance)-based methods as potential nondestructive evaluation (NDT) techniques have been widely used in the field of structural health monitoring (SHM), especially for the civil, mechanical, and aerospace engineering fields. However, it is still difficult to apply in practical applications due to the limitations of the impedance measurement hardware, which is usually expensive, bulky, and heavy. In this paper, a small, lightweight, and low power consumption EMI-based structural health monitoring system combined with the low-cost miniature impedance board AD5933 was studied experimentally to investigate its quantifiable performance in impedance measurement and structural damage identification. At first, a simple impedance test with a free PZT patch was introduced to present the impedance calibration and measurement procedure of AD5933, and then its calibration performance was validated by comparing the signature with the one measured by a professional impedance analyzer (WK6500B). In order to further validate the feasibility and effectiveness of the AD5933 board in practical applications, a threaded pipe connection specimen was assembled in the laboratory and then connected with the AD5933 to acquire its impedance signatures under different loosening severities. The final results demonstrated that the impedance measured by the AD5933 show a good consistency with the measurements by the WK6500B, and the evaluation board could be successfully utilized for the loosening severities identification and quantitatively evaluation.


2019 ◽  
Vol 19 (1) ◽  
pp. 215-239 ◽  
Author(s):  
Danny Smyl ◽  
Sven Bossuyt ◽  
Waqas Ahmad ◽  
Anton Vavilov ◽  
Dong Liu

The ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and plasticity are central themes in structural health monitoring. The importance of detecting such processes early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension, the detection of distributed damage processes also generally requires input data from more than one dimension. Often, however, interpretation of distributed data—alone—offers insufficient information. For this reason, engineers and researchers have become interested in stationary inverse methods, for example, utilizing distributed data from stationary or quasi-stationary measurements for tomographic imaging structures. Presently, however, there are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers, a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage. These regimes are then applied to two emerging structural health monitoring imaging modalities: Electrical Resistance Tomography and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and experimental data.


2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


2021 ◽  
Author(s):  
Huaqiang Zhong ◽  
Limin Sun ◽  
José Turmo ◽  
Ye Xia

<p>In recent years, the safety and comfort problems of bridges are not uncommon, and the operating conditions of in-service bridges have received widespread attention. Many large-span key bridges have installed structural health monitoring systems and collected massive amounts of data. Monitoring data is the basis of structural damage identification and performance evaluation, and it is of great significance to analyze and evaluate its quality. This paper takes the acceleration monitoring data of the main girder and arch rib of a long-span arch bridge as the research object, analyzes and summarizes the statistical characteristics of the data, summarizes 6 abnormal data conditions, and proposes a data quality evaluation method of convolutional neural network. This paper conducts frequency statistics on the acceleration vibration amplitude of the bridge in December 2018 in hours. In order to highlight the end effect of frequency statistics, the whole is amplified and used as network input for training and data quality evaluation. The results are good. It provides another new method for structural monitoring data quality evaluation and abnormal data elimination.</p>


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4312 ◽  
Author(s):  
Yunzhu Chen ◽  
Xingwei Xue

With the rapid development of the world’s transportation infrastructure, many long-span bridges were constructed in recent years, especially in China. However, these bridges are easily subjected to various damages due to dynamic loads (such as wind-, earthquake-, and vehicle-induced vibration) or environmental factors (such as corrosion). Therefore, structural health monitoring (SHM) is vital to guarantee the safety of bridges in their service lives. With its wide frequency response range, fast response, simple preparation process, ease of processing, low cost, and other advantages, the piezoelectric transducer is commonly employed for the SHM of bridges. This paper summarizes the application of piezoelectric materials for the SHM of bridges, including the monitoring of the concrete strength, bolt looseness, steel corrosion, and grouting density. For each problem, the application of piezoelectric materials in different research methods is described. The related data processing methods for four types of bridge detection are briefly summarized, and the principles of each method in practical application are listed. Finally, issues to be studied when using piezoelectric materials for monitoring are discussed, and future application prospects and development directions are presented.


Author(s):  
Milton Muñoz ◽  
Remigio Guevara ◽  
Santiago González ◽  
Juan Carlos Jiménez

This paper presents and evaluates a continuous recording system designed for a low-cost seismic station. The architecture has three main blocks. An accelerometer sensor based on MEMS technology (Microelectromechanical Systems), an SBC platform (Single Board Computer) with embedded Linux and a microcontroller device. In particular, the microcontroller represents the central component which operates as an intermediate agent to manage the communication between the accelerometer and the SBC block. This strategy allows the system for data acquisition in real time. On the other hand, the SBC platform is used for storing and processing data as well as in order to configure the remote communication with the station. This proposal is intended as a robust solution for structural health monitoring (i.e. in order to characterize the response of an infrastructure before, during and after a seismic event). The paper details the communication scheme between the system components, which has been minutely designed to ensure the samples are collected without information loss. Furthermore, for the experimental evaluation the station was located in the facilities on a relevant infrastructure, specifically a hydroelectric dam. The system operation was compared and verified with respect to a certified accelerograph station. Results prove that the continuous recording system operates successfully and allows for detecting seismic events according to requirements of structural health applications (i.e. detects events with a frequency of vibration less than 100 Hz). Specifically, through the system implemented it was possible to characterize the effect of a seismic event of 4 MD reported by the regional seismology network and with epicenter located about 30 Km of the hydroelectric dam. Particularly, the vibration frequencies detected on the infrastructure are in the range of 13 Hz and 29 Hz. Regarding the station performance, results from experiments reveals an average CPU load of 51%, consequently the processes configured on the SBC platform do not involve an overload. Finally, the average energy consumption of the station is close to 2.4 W, therefore autonomy provided by the backup system is aroud of 10 hours.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


Sign in / Sign up

Export Citation Format

Share Document