Optimal Sensor Placement Methodology for Identification with Unmeasured Excitation

2001 ◽  
Vol 123 (4) ◽  
pp. 677-686 ◽  
Author(s):  
Ka-Veng Yuen ◽  
Lambros S. Katafygiotis ◽  
Costas Papadimitriou ◽  
Neil C. Mickleborough

A methodology is presented for designing cost-effective optimal sensor configurations for structural model updating and health monitoring purposes. The optimal sensor configuration is selected such that the resulting measured data are most informative about the condition of the structure. This selection is based on an information entropy measure of the uncertainty in the model parameter estimates obtained using a statistical system identification method. The methodology is developed for the uncertain excitation case encountered in practical applications for which data are to be taken either from ambient vibration tests or from other uncertain excitations such as earthquake and wind. Important issues related to robustness of the optimal sensor configuration to uncertainties in the structural model are addressed. The theoretical developments are illustrated by designing the optimal configuration for a simple 8-DOF chain-like model of a structure subjected to an unmeasured base excitation and a 40-DOF truss model subjected to wind/earthquake excitation.

Author(s):  
C. Papadimitriou ◽  
K. Christodoulou ◽  
M. Pavlidou ◽  
S. A. Karamanos

Abstract A methodology is presented for designing cost-effective optimal sensor and actuator configurations useful for structural model updating and health monitoring purposes. The optimal sensor and actuator configuration is selected such that the resulting measured data are most informative about the condition of the structure. This selection is based on an information entropy measure of the uncertainty in the model parameter estimates obtained using a statistical system identification methodology. The optimal sensor and actuator configuration is selected as the one that minimizes the information entropy. A discrete optimization problem arises which is solved efficiently using genetic algorithms. This study also addresses important issues related to robustness of the optimal sensor and actuator configuration to unavoidable uncertainties in the structural model, as well as issues related to the optimal sensor and actuator configurations designed to monitor multiple damage scenarios. The theoretical developments are illustrated by designing the optimal configuration for a 40-DOF two-dimensional truss structure subjected to an impulse hammer excitation.


2017 ◽  
Vol 34 (3) ◽  
pp. 754-780 ◽  
Author(s):  
Rafael Castro-Triguero ◽  
Enrique Garcia-Macias ◽  
Erick Saavedra Flores ◽  
M.I. Friswell ◽  
Rafael Gallego

Purpose The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction with ambient vibration tests. Design/methodology/approach In a first stage, a numerical pre-test analysis of the full bridge is performed, using standard beam-type finite elements with isotropic material properties. This approach offers a first structural model in which optimal sensor placement (OSP) methodologies are applied to improve the system identification process. In particular, the effective independence (EFI) method is used to determine the optimal locations of a set of sensors. Ambient vibration tests are conducted to determine experimentally the modal characteristics of the structure. The identified modal parameters are compared with those values obtained from this preliminary model. To improve the accuracy of the numerical predictions, the material response is modeled by means of a homogenization-based multi-scale computational approach. In a second stage, the structure is modeled by means of three-dimensional solid elements with the above material definition, capturing realistically the full orthotropic mechanical properties of wood. A genetic algorithm (GA) technique is adopted to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally. Findings An overall good agreement is found between the results of the updated numerical simulations and the corresponding experimental measurements. The longitudinal and transverse Young's moduli, sliding and rolling shear moduli, density and natural frequencies are computed by the present approach. The obtained results reveal the potential predictive capabilities of the present GA/multi-scale/experimental approach to capture accurately the actual behavior of complex materials and structures. Originality/value The uniqueness and importance of this structure leads to an intensive study of its structural behavior. Ambient vibration tests are carried out under environmental excitation. Extraction of modal parameters is obtained from output-only experimental data. The EFI methodology is applied for the OSP on a large-scale structure. Information coming from several length scales, from sub-micrometer dimensions to macroscopic scales, is included in the material definition. The strong differences found between the stiffness along the longitudinal and transverse directions of wood lumbers are incorporated in the structural model. A multi-scale model updating approach is carried out by means of a GA technique to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.


2013 ◽  
Vol 40 (8) ◽  
pp. 791-802 ◽  
Author(s):  
Benoit Boulanger ◽  
Charles-Philippe Lamarche ◽  
Jean Proulx ◽  
Patrick Paultre

Despite all the damages encountered during the 2010 Haiti earthquake, the 12-storey reinforced-concrete Digicel building behaved well, sustaining only reparable damages. Visual assessment to characterize the damages sustained and ambient vibration tests (AVT) were carried out to identify the building’s key dynamics properties (natural vibration frequencies, mode shapes, and damping ratios). ETABS was used to generate finite element (FE) models before and after the AVT, to evaluate the capabilities of common modelling assumptions to predict the dynamic behaviour of structures. Nonautomated model updating was carried out to generate a model representing the building’s actual dynamic behaviour in its damaged state. The study showed that the finite element method (FEM) is reliable for predicting the dynamic behaviour of structures, but is very sensitive to the modelling assumptions. The models could predict the vibration frequencies precisely, but an accurate representation of the mode shapes required careful model updating.


Author(s):  
Dora Foti ◽  
Mariella Diaferio ◽  
Nicola Ivan Giannoccaro ◽  
Salvador Ivorra

In the present chapter the theoretical basis of different methods developed for the calibration of FEMs are discussed. In general, Model Updating techniques are based on the use of appropriate functions that iteratively update selected physical properties (characteristics of the materials, stiffness of a link, etc.). In this way the correlation between the simulated response and the target value could improve if compared to an initial value. The FE model thus obtained can be used for a detailed structural analysis with a great confidence. The technique described in the first part of the chapter is applied to the evaluation of the structural properties of the tower of the Provincial Administration Building in Bari (Italy).The final purpose is to predict the performance of the tower to different combinations of static and dynamic loads, i.e. earthquakes or other induced vibrations. Ambient vibration tests have been performed on the above mentioned tower with the aim of determining its dynamic response and developing a procedure for modeling this building (Foti et al., 2012a). The Operation Modal Analysis (OMA) has been carried out both in the frequency domain and in the time domain to extract the dominant frequencies and mode shapes of the tower.


2019 ◽  
Vol 22 (16) ◽  
pp. 3385-3394
Author(s):  
Heung Fai Lam ◽  
Jun Hu ◽  
Mujib Olamide Adeagbo

Most existing buildings are not equipped with long-term monitoring system. For the structural model updating and damage detection of this type of structures, ambient vibration test is popular as artificial excitation is not required. This article presents in detail the full-scale ambient vibration test, operational modal analysis, and model updating of a tall building. To capture the dynamic properties of the target 20-story building with limited number of sensors, a 15-setup ambient vibration test was designed to cover at least three measurement points (each consists of a vertical and two orthogonal horizontal measured degrees of freedom) for each selected floor. The modal parameters of each setup were extracted from the measured acceleration signals using a frequency domain decomposition method and were combined to form the global mode shape through the least-squares method. Due to the regularity of the building, a simple class of shear building models was employed to capture the dynamic characteristics of the building under lateral vibration. The identified modal parameters of the building were employed for the model updating of the shear building model to identify the distribution of inter-story stiffness. Since the “amount” of the measured information is small when compared to the “amount” of required information for identifying the uncertain parameters, the model updating problem is unidentifiable. To handle this problem, the Markov chain Monte Carlo–based Bayesian model updating method is employed in this study. The identified modal parameters revealed interesting features about the dynamic properties of the building. The well-matched results between model-predicted and identified modal parameters show the validity of the shear building model in this case study. This study provides valuable experience in the area of structural model updating and structural health monitoring.


Author(s):  
Dora Foti ◽  
Mariella Diaferio ◽  
Nicola Ivan Giannoccaro ◽  
Salvador Ivorra

In the present chapter the theoretical basis of different methods developed for the calibration of FEMs are discussed. In general, Model Updating techniques are based on the use of appropriate functions that iteratively update selected physical properties (characteristics of the materials, stiffness of a link, etc.). In this way the correlation between the simulated response and the target value could improve if compared to an initial value. The FE model thus obtained can be used for a detailed structural analysis with a great confidence. The technique described in the first part of the chapter is applied to the evaluation of the structural properties of the tower of the Provincial Administration Building in Bari (Italy).The final purpose is to predict the performance of the tower to different combinations of static and dynamic loads, i.e. earthquakes or other induced vibrations. Ambient vibration tests have been performed on the above mentioned tower with the aim of determining its dynamic response and developing a procedure for modeling this building (Foti et al., 2012a). The Operation Modal Analysis (OMA) has been carried out both in the frequency domain and in the time domain to extract the dominant frequencies and mode shapes of the tower.


Sign in / Sign up

Export Citation Format

Share Document