Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading

2002 ◽  
Vol 125 (1) ◽  
pp. 52-59 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

The simultaneous effects of mechanical and thermal surface loadings on the deformation of layered media were analyzed with the finite element method. A three-dimensional model of an elastic sphere sliding over an elastic-plastic layered medium was developed and validated by comparing finite element results with analytical and numerical solutions for the stresses and temperature distribution at the surface of an elastic homogeneous half-space. The evolution of deformation in the layered medium due to thermomechanical surface loading is interpreted in light of the dependence of temperature, von Mises equivalent stress, first principal stress, and equivalent plastic strain on the layer thickness, Peclet number, and sliding distance. The propensity for plastic flow and microcracking in the layered medium is discussed in terms of the thickness and thermal properties of the layer, sliding speed, medium compliance, and normal load. It is shown that frictional shear traction and thermal loading promote stress intensification and plasticity, especially in the case of relatively thin layers exhibiting low thermal conductivity.

2003 ◽  
Vol 125 (4) ◽  
pp. 692-699 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

The effect of residual stress in the surface layer on the deformation of elastic-plastic layered media due to indentation and sliding contact loading and unloading was analyzed with the finite element method. A three-dimensional finite element model of a rigid sphere interacting with a deformable layered medium was developed, and its accuracy was evaluated by contrasting finite element results with analytical solutions for the surface stresses of an elastic homogeneous half-space subjected to normal and friction surface traction. Deformation of the layered medium is interpreted in terms of the dependence of the von Mises equivalent stress, first principal stress, and equivalent plastic strain on the magnitudes of residual stress and coefficient of friction. The effect of residual stress on the propensity for yielding and cracking in the layered medium is discussed in the context of results for the maximum Mises and tensile stresses and the evolution of plasticity in the subsurface. It is shown that the optimum residual stress in the surface layer depends on the type of contact loading (indentation or sliding), coefficient of friction, and dominant deformation mode in the layer (i.e., plastic deformation or cracking).


2004 ◽  
Vol 126 (1) ◽  
pp. 18-27 ◽  
Author(s):  
J. Yang ◽  
K. Komvopoulos

A plane-strain analysis of dynamic indentation of an elastic-plastic multi-layered medium by a rigid cylinder was performed using the finite element method. Conversely to plane-strain static contact analysis, the solutions of a dynamic contact analysis within a subsurface domain adjacent to the contact region are independent of mesh size, provided the mesh dimensions are sufficiently large such that the propagating waves reflected from the artificial boundaries do not reach the domain of interest during the analysis. Simulation results for the normal force, contact pressure distribution, subsurface stresses, and evolution of plasticity in the multi-layered medium are presented in terms of the speed and radius of the rigid indenter. The likelihood of mechanical failure due to excessive plastic deformation and cracking is interpreted in terms of finite element results for the von Mises equivalent stress, first principal stress, and equivalent plastic strain obtained for different values of the indenter speed and radius of curvature.


2003 ◽  
Vol 125 (4) ◽  
pp. 685-691 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

A hardness analysis based on finite element simulation results and contact constitutive models is presented for both homogeneous and layered elastic-plastic media. The analysis provides criteria for obtaining the real material hardness from indentation experiments performed with spherical indenters. Emphasis is given on the estimation of the hardness of thin surface layers. The critical (maximum) interference distance that yields an insignificant effect of the substrate deformation on the estimation of the layer hardness is determined from the variation of the equivalent hardness of the layered medium with the interference distance (indentation depth). A relation between hardness, yield strength, and elastic modulus, derived from finite element simulations of a homogeneous half-space indented by a rigid sphere, is used in conjunction with a previously developed contact constitutive model for layered media to determine the minimum interference distance needed to produce sufficient plasticity in order to ensure accurate measurement of the material hardness. An analytical approach for estimating the layer hardness from indentations performed on layered media is presented and its applicability is demonstrated in light of finite element indentation results for an elastic-perfectly plastic layered medium with a hard surface layer.


1996 ◽  
Vol 118 (1) ◽  
pp. 1-11 ◽  
Author(s):  
E. R. Kral ◽  
K. Komvopoulos ◽  
D. B. Bogy

Experiments and finite element simulations are presented pertaining to the effective hardness and the mechanics of indentation and sliding contact on elastic-plastic layered media. Hardness measurements obtained from scratch experiments are presented for thin-film rigid disks with 30 nm carbon overcoats. Reproducible results are obtained for residual scratch depths greater than approximately 8 nm. A simple force balance model is used to calculate the effective hardness of the layered medium. Hardness values for the surface layer are calculated by fitting a relationship between the hardness, scratch geometry, and layer thickness to the experimental data. The experimental results are compared with three-dimensional finite element simulations of a rigid spherical indenter sliding over a half-space with a stiffer and harder surface layer. The finite element results are used to verify the hardness model applied to the experimental data and to provide insight into the observed experimental behavior in the context of the associated elastic-plastic deformation characteristics of the layered medium.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


Sign in / Sign up

Export Citation Format

Share Document