Effect of Residual Stress in Surface Layer on Contact Deformation of Elastic-Plastic Layered Media

2003 ◽  
Vol 125 (4) ◽  
pp. 692-699 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

The effect of residual stress in the surface layer on the deformation of elastic-plastic layered media due to indentation and sliding contact loading and unloading was analyzed with the finite element method. A three-dimensional finite element model of a rigid sphere interacting with a deformable layered medium was developed, and its accuracy was evaluated by contrasting finite element results with analytical solutions for the surface stresses of an elastic homogeneous half-space subjected to normal and friction surface traction. Deformation of the layered medium is interpreted in terms of the dependence of the von Mises equivalent stress, first principal stress, and equivalent plastic strain on the magnitudes of residual stress and coefficient of friction. The effect of residual stress on the propensity for yielding and cracking in the layered medium is discussed in the context of results for the maximum Mises and tensile stresses and the evolution of plasticity in the subsurface. It is shown that the optimum residual stress in the surface layer depends on the type of contact loading (indentation or sliding), coefficient of friction, and dominant deformation mode in the layer (i.e., plastic deformation or cracking).

2002 ◽  
Vol 125 (1) ◽  
pp. 52-59 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

The simultaneous effects of mechanical and thermal surface loadings on the deformation of layered media were analyzed with the finite element method. A three-dimensional model of an elastic sphere sliding over an elastic-plastic layered medium was developed and validated by comparing finite element results with analytical and numerical solutions for the stresses and temperature distribution at the surface of an elastic homogeneous half-space. The evolution of deformation in the layered medium due to thermomechanical surface loading is interpreted in light of the dependence of temperature, von Mises equivalent stress, first principal stress, and equivalent plastic strain on the layer thickness, Peclet number, and sliding distance. The propensity for plastic flow and microcracking in the layered medium is discussed in terms of the thickness and thermal properties of the layer, sliding speed, medium compliance, and normal load. It is shown that frictional shear traction and thermal loading promote stress intensification and plasticity, especially in the case of relatively thin layers exhibiting low thermal conductivity.


Author(s):  
Nobuyoshi Yanagida ◽  
Masaaki Tanaka ◽  
Norimichi Yamashita ◽  
Yukinori Yamamoto

Alternative stress evaluation criteria suitable for Finite Element Analysis (FEA) proposed by Okamoto et al. [1],[2] have been studied by the Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) in Japan. Thermal stress ratchet criteria in plastic FEA are now under consideration. Two criteria are proposed: (1) Evaluating variations in plastic strain increments, and (2) Evaluating the width of the area in which Mises equivalent stress exceeds 3Sm. To verify of these criteria, we selected notched cylindrical vessel models as prime elements. To evaluate the effect of the local peak stress distribution on these criteria, cylindrical vessels with a semicircular notch on the outer surface were selected for this analysis. We used two notch configurations for our analysis, and the stress concentration factor for the notches was set to 1.5 and 2.0. We conducted elastic-plastic analysis to evaluate the ratchet limit. Sustained pressure and alternating enforced longitudinal displacements which causes secondary stress were used as parameters for the elastic-plastic analysis. We found that when no ratchet was observed, the equivalent plastic strain increments decreased and the area in which Mises equivalent stress exceeds 3Sm are below the certain range.


2004 ◽  
Vol 126 (1) ◽  
pp. 18-27 ◽  
Author(s):  
J. Yang ◽  
K. Komvopoulos

A plane-strain analysis of dynamic indentation of an elastic-plastic multi-layered medium by a rigid cylinder was performed using the finite element method. Conversely to plane-strain static contact analysis, the solutions of a dynamic contact analysis within a subsurface domain adjacent to the contact region are independent of mesh size, provided the mesh dimensions are sufficiently large such that the propagating waves reflected from the artificial boundaries do not reach the domain of interest during the analysis. Simulation results for the normal force, contact pressure distribution, subsurface stresses, and evolution of plasticity in the multi-layered medium are presented in terms of the speed and radius of the rigid indenter. The likelihood of mechanical failure due to excessive plastic deformation and cracking is interpreted in terms of finite element results for the von Mises equivalent stress, first principal stress, and equivalent plastic strain obtained for different values of the indenter speed and radius of curvature.


2003 ◽  
Vol 125 (4) ◽  
pp. 685-691 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

A hardness analysis based on finite element simulation results and contact constitutive models is presented for both homogeneous and layered elastic-plastic media. The analysis provides criteria for obtaining the real material hardness from indentation experiments performed with spherical indenters. Emphasis is given on the estimation of the hardness of thin surface layers. The critical (maximum) interference distance that yields an insignificant effect of the substrate deformation on the estimation of the layer hardness is determined from the variation of the equivalent hardness of the layered medium with the interference distance (indentation depth). A relation between hardness, yield strength, and elastic modulus, derived from finite element simulations of a homogeneous half-space indented by a rigid sphere, is used in conjunction with a previously developed contact constitutive model for layered media to determine the minimum interference distance needed to produce sufficient plasticity in order to ensure accurate measurement of the material hardness. An analytical approach for estimating the layer hardness from indentations performed on layered media is presented and its applicability is demonstrated in light of finite element indentation results for an elastic-perfectly plastic layered medium with a hard surface layer.


1996 ◽  
Vol 118 (1) ◽  
pp. 1-11 ◽  
Author(s):  
E. R. Kral ◽  
K. Komvopoulos ◽  
D. B. Bogy

Experiments and finite element simulations are presented pertaining to the effective hardness and the mechanics of indentation and sliding contact on elastic-plastic layered media. Hardness measurements obtained from scratch experiments are presented for thin-film rigid disks with 30 nm carbon overcoats. Reproducible results are obtained for residual scratch depths greater than approximately 8 nm. A simple force balance model is used to calculate the effective hardness of the layered medium. Hardness values for the surface layer are calculated by fitting a relationship between the hardness, scratch geometry, and layer thickness to the experimental data. The experimental results are compared with three-dimensional finite element simulations of a rigid spherical indenter sliding over a half-space with a stiffer and harder surface layer. The finite element results are used to verify the hardness model applied to the experimental data and to provide insight into the observed experimental behavior in the context of the associated elastic-plastic deformation characteristics of the layered medium.


2002 ◽  
Vol 125 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Z.-Q. Gong ◽  
K. Komvopoulos

A plane-strain finite element analysis for patterned elastic-plastic layered media was performed in order to elucidate the effect of surface geometry on the deformation and stress fields due to normal and sliding contact. Surface interaction between the layered media and a rigid asperity was modeled with special contact elements. Results for the contact pressure distribution, surface tensile stress, and subsurface equivalent plastic strain are presented for layered media with different meandered and sinusoidal surfaces. The significance of surface patterning on the deformation behavior is interpreted in terms of stress and strain results illustrative of the tendency for crack initiation and plastic deformation in the first two layers, where deformation is confined in all simulation cases. Relations for the contact pressure concentration factor and onset of yielding in the first (hard) layer are derived from finite element results for indented layered media with sinusoidal surface patterns. Predictions for the indentation depth at the onset of yielding based on the developed yield criterion are shown to be in good agreement with those obtained from finite element simulations.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 629
Author(s):  
Nana Kwabena Adomako ◽  
Sung Hoon Kim ◽  
Ji Hong Yoon ◽  
Se-Hwan Lee ◽  
Jeoung Han Kim

Residual stress is a crucial element in determining the integrity of parts and lifetime of additively manufactured structures. In stainless steel and Ti-6Al-4V fabricated joints, residual stress causes cracking and delamination of the brittle intermetallic joint interface. Knowledge of the degree of residual stress at the joint interface is, therefore, important; however, the available information is limited owing to the joint’s brittle nature and its high failure susceptibility. In this study, the residual stress distribution during the deposition of 17-4PH stainless steel on Ti-6Al-4V alloy was predicted using Simufact additive software based on the finite element modeling technique. A sharp stress gradient was revealed at the joint interface, with compressive stress on the Ti-6Al-4V side and tensile stress on the 17-4PH side. This distribution is attributed to the large difference in the coefficients of thermal expansion of the two metals. The 17-4PH side exhibited maximum equivalent stress of 500 MPa, which was twice that of the Ti-6Al-4V side (240 MPa). This showed good correlation with the thermal residual stress calculations of the alloys. The thermal history predicted via simulation at the joint interface was within the temperature range of 368–477 °C and was highly congruent with that obtained in the actual experiment, approximately 300–450 °C. In the actual experiment, joint delamination occurred, ascribable to the residual stress accumulation and multiple additive manufacturing (AM) thermal cycles on the brittle FeTi and Fe2Ti intermetallic joint interface. The build deflected to the side at an angle of 0.708° after the simulation. This study could serve as a valid reference for engineers to understand the residual stress development in 17-4PH and Ti-6Al-4V joints fabricated with AM.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


Author(s):  
V Sura ◽  
S Mahadevan

Shattered rim cracking, propagation of a subsurface crack parallel to the tread surface, is one of the dominant railroad wheel failure types observed in North America. This crack initiation and propagation life depends on several factors, such as wheel rim thickness, wheel load, residual stresses in the rim, and the size and location of material defects in the rim. This article investigates the effect of the above-mentioned parameters on shattered rim cracking, using finite element analysis and fracture mechanics. This cracking is modelled using a three-dimensional, multiresolution, elastic–plastic finite element model of a railroad wheel. Material defects are modelled as mathematically sharp cracks. Rolling contact loading is simulated by applying the wheel load on the tread surface over a Hertzian contact area. The equivalent stress intensity factor ranges at the subsurface crack tips are estimated using uni-modal stress intensity factors obtained from the finite element analysis and a mixed-mode crack growth model. The residual stress and wheel wear effects are also included in modelling shattered rim cracking. The analysis results show that the sensitive depth below the tread surface for shattered rim cracking ranges from 19.05 to 22.23 mm, which is in good agreement with field observations. The relationship of the equivalent stress intensity factor (Δ K eq) at the crack tip to the load magnitude is observed to be approximately linear. The analysis results show that the equivalent stress intensity factor (Δ K eq) at the crack tip depends significantly on the residual stress state in the wheel. Consideration of as-manufactured residual stresses decreases the Δ K eq at the crack tip by about 40 per cent compared to that of no residual stress state, whereas consideration of service-induced residual stresses increases the Δ K eq at the crack tip by about 50 per cent compared to that of as-manufactured residual stress state. In summary, the methodology developed in this article can help to predict whether a shattered rim crack will propagate for a given set of parameters, such as load magnitude, rim thickness, crack size, crack location, and residual stress state.


Author(s):  
Noel P. O’Dowd ◽  
Kamran M. Nikbin ◽  
Farid R. Biglari

In this paper, the effect of residual stress on the initiation of a crack at high temperature in a Type 347 austenitic steel weld is examined using the finite element method. Both two and three dimensional analyses have been carried out. Residual stresses have been introduced by prior mechanical deformation, using a previously developed notched compact tension specimen. It has been found that for the 347 weld material, peak stresses in the vicinity of the notch are approximately three times the yield strength at room temperature and the level of stress triaxiality (ratio between hydrostatic and equivalent stress) is approximately 1 (considerably higher than that for a uniaxial test). The finite element analysis includes the effects of stress redistribution and damage accumulation under creep conditions. For the case examined the analysis predicts that crack initiation will occur under conditions of stress relaxation if the uniaxial creep ductility of the material is less than 2.5%. Furthermore, the predicted life of the component under constant load (creep conditions) is significantly reduced due to the presence of the residual stress field.


Sign in / Sign up

Export Citation Format

Share Document