Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 2: Turbulence Spectra

2002 ◽  
Vol 124 (4) ◽  
pp. 656-664 ◽  
Author(s):  
Ralph J. Volino

Spectral analysis was used to investigate boundary layer separation, transition and reattachment under low-pressure turbine airfoil conditions. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Spectra of the fluctuating streamwise velocity and the turbulent shear stress are presented. The spectra for the low free-stream turbulence cases are characterized by sharp peaks. The high free-stream turbulence case spectra exhibit more broadband peaks, but these peaks are centered at the same frequencies observed in the corresponding low turbulence cases. The frequencies of the peaks suggest that a Tollmien-Schlichting instability mechanism drives transition, even in the high turbulence cases. The turbulent shear stress spectra proved particularly valuable for detection of the early growth of the instability. The predictable nature of the instability may prove useful for future flow control work.

Author(s):  
Ralph J. Volino

Spectral analysis was used to investigate boundary layer separation, transition and reattachment under low-pressure turbine airfoil conditions. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Spectra of the fluctuating streamwise velocity and the turbulent shear stress are presented. The spectra for the low free-stream turbulence cases are characterized by sharp peaks. The high free-stream turbulence case spectra exhibit more broadband peaks, but these peaks are centered at the same frequencies observed in the corresponding low turbulence cases. The frequencies of the peaks suggest that a Tollmien-Schlichting instability mechanism drives transition, even in the high turbulence cases. The turbulent shear stress spectra proved particularly valuable for detection of the early growth of the instability. The predictable nature of the instability may prove useful for future flow control work.


2002 ◽  
Vol 124 (4) ◽  
pp. 645-655 ◽  
Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.


Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.


Author(s):  
Ralph J. Volino ◽  
Michael P. Schultz ◽  
Christopher M. Pratt

Conditional sampling has been performed on data from a transitional boundary layer subject to high (initially 9%) free-stream turbulence and strong K=ν/U∞2dU∞/dxas high as9×10-6 acceleration. Methods for separating the turbulent and non-turbulent zone data based on the instantaneous streamwise velocity and the turbulent shear stress were tested and found to agree. Mean velocity profiles were clearly different in the turbulent and non-turbulent zones, and skin friction coefficients were as much as 70% higher in the turbulent zone. The streamwise fluctuating velocity, in contrast, was only about 10% higher in the turbulent zone. Turbulent shear stress differed by an order of magnitude, and eddy viscosity was three to four times higher in the turbulent zone. Eddy transport in the non-turbulent zone was still significant, however, and the non-turbulent zone did not behave like a laminar boundary layer. Within each of the two zones there was considerable self-similarity from the beginning to the end of transition. This may prove useful for future modeling efforts.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


2021 ◽  
pp. 1-17
Author(s):  
Maxime Fiore ◽  
Nicolas Gourdain

Abstract This paper presents the Large Eddy Simulation of a Low-Pressure Turbine Nozzle Guide Vane for different Reynolds (Re) and Mach numbers (Ma) with or without inlet turbulence prescribed. The analysis is based on a slice of a LPT blading representative of a midspan flow. The characteristic Re of the LPT can vary by a factor of four between take-off and cruise conditions. In addition, the LPT operates at different Ma and the incident flow can have significant levels of turbulence due to upstream blade wakes. The paper investigates numerically using LES the flow around a LPT blading with three different Reynolds number Re = 175'000 (cruise), 280'000 (mid-level altitude) and 500'000 (take-off) keeping the same characteristic Mach number Ma = 0.2 and three different Mach number Ma = 0.2, 0.5 and 0.8 keeping the same Reynolds number Re= 280'000. These different simulations are performed with 0% Free Stream Turbulence (FST) followed by inlet turbulence (6% FST). The study focuses on different flow characteristics: pressure distribution around the blade, near-wall flow behavior, loss generation and Turbulent Kinetic Energy budget. The results show an earlier boundary layer separation on the aft of the blade suction side when the Re is increased while the free-stream turbulence delays separation. The TKE budget shows the predominant effect of the turbulent production and diffusion in the wake, the axial evolution of these different terms being relatively insensitive to Re and Ma.


2003 ◽  
Vol 125 (4) ◽  
pp. 754-764 ◽  
Author(s):  
Ralph J. Volino

Two-dimensional rectangular bars have been used in an experimental study to control boundary layer transition and reattachment under low-pressure turbine conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (8.5% inlet) free-stream turbulence levels. Three different bars were considered, with heights ranging from 0.2% to 0.7% of suction surface length. Mean and fluctuating velocity and intermittency profiles are presented and compared to results of baseline cases from a previous study. Bar performance depends on the bar height and the location of the bar trailing edge. Bars located near the suction surface velocity maximum are most effective. Large bars trip the boundary layer to turbulent and prevent separation, but create unnecessarily high losses. Somewhat smaller bars had no immediate detectable effect on the boundary layer, but introduced small disturbances that caused transition and reattachment to move upstream from their locations in the corresponding baseline case. The smaller bars were effective under both high and low free-stream turbulence conditions, indicating that the high free-stream turbulence transition is not simply a bypass transition induced by the free stream. Losses appear to be minimized when a small separation bubble is present, so long as reattachment begins far enough upstream for the boundary layer to recover from the separation. Correlations for determining optimal bar height are presented. The bars appear to provide a simple and effective means of passive flow control. Bars that are large enough to induce reattachment at low Re, however, cause higher losses at the highest Re. Some compromise would, therefore, be needed when choosing a bar height for best overall performance.


Author(s):  
Ralph J. Volino

Two-dimensional rectangular bars have been used in an experimental study to control boundary layer transition and reattachment under low-pressure turbine conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (8.5% inlet) free-stream turbulence levels. Three different bars were considered, with heights ranging from 0.2% to 0.7% of suction surface length. Mean and fluctuating velocity and intermittency profiles are presented and compared to results of baseline cases from a previous study. Bar performance depends on the bar height and the location of the bar trailing edge. Bars located near the suction surface velocity maximum are most effective. Large bars trip the boundary layer to turbulent and prevent separation, but create unnecessarily high losses. Somewhat smaller bars had no immediate detectable effect on the boundary layer, but introduced small disturbances which caused transition and reattachment to move upstream from their locations in the corresponding baseline case. The smaller bars were effective under both high and low free-stream turbulence conditions, indicating that the high free-stream turbulence transition is not simply a bypass transition induced by the free-stream. Losses appear to be minimized when a small separation bubble is present, so long as reattachment begins far enough upstream for the boundary layer to recover from the separation. Correlations for determining optimal bar height are presented. The bars appear to provide a simple and effective means of passive flow control. Bars which are large enough to induce reattachment at low Re, however, cause higher losses at the highest Re. Some compromise would, therefore, be needed when choosing a bar height for best overall performance.


2003 ◽  
Vol 125 (4) ◽  
pp. 765-777 ◽  
Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re=25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Author(s):  
Tomohiko Jimbo ◽  
Debasish Biswas

In this work, unsteady viscous flow analysis around Low Pressure Turbine (LPT) cascade using a High-Order LES (Large Eddy Simulation) turbulence model is carried out to investigate basic physical process. In the aerospace industry, input shaft power for fan and compressor components of turbine engines is most commonly supplied by the LPT. Considering this fact, in the endeavor of developing engines of increased efficiency and decreased weight LPT is an important component worth paying attention. Therefore, a better understanding of low-Reynolds number flow transition and separation behavior is very much essential to such improvements. Blades in the LPT environment may be designed for higher loading if the effects of passing wakes on bypass transition are properly included in the design. Also, under the LPT working conditions, boundary layers along a large extent of blade surface can remain laminar, even in the presence of elevated free-stream turbulence levels. The laminar boundary layers are then particularly susceptible to flow separation over the aft portion of blade suction surfaces, causing blockage in flow passages and a significant reduction in turbine efficiency. Related to weight reduction, the blade spacing in LPT can be increased with a rise in per blade loading. Increased blade spacing however, is accompanied by more extensive boundary layer separation on the suction surface of each blade due to uncovered turning, resulting in a further reduction of efficiency and additional wake losses. In the present work, experimental work is numerically simulated. Features of the flow-fields are described and compared with the experimental data on baseline case and active flow separation control using Vortex Generator Jet (VGJ).


Sign in / Sign up

Export Citation Format

Share Document