Multi-Objective Optimization of a High Specific Speed Centrifugal Volute Pump Using Three-Dimensional Inverse Design Coupled With Computational Fluid Dynamics Simulations

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.

2018 ◽  
Vol 167 ◽  
pp. 03006
Author(s):  
Xiao-er Wang ◽  
Zhen-shan Zhang ◽  
Meng Zhang

In order to balance the torque of front rotor and rear rotor of underwater vehicle, the analysis of the speed triangles at the inlet and outlet of the front and rear rotor has been done. Then, the thought of using contra-rotating pumpjet to achieve the objective was raised. The stator is installed behind the rear rotor so as to ensure the overall torque of the propulsor balance, at the same time, the stator can also support the shroud of the propulsor. the parameter design of the rotor and the stator has been carried out by using the three dimensional inverse design method. At last, the performance of the designed pumpjet propulsor is obtained when it is installed on the underwater vehicle By using computational fluid dynamics. The results show that the total torque of the propulsor is reduced to 1.8 N * m on the design point although the power difference ratio of the front rotor and the rear rotor is 20%. The torque ratio is also reduced from 4.6% to 0.4%, which is good to meet the propulsor balance requirement and verifies the 3-D design method of pumpjet is effective.


Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a 3D inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry is changed during the optimization. In the first approach Design of Experiment method is used and the efficiency computed from CFD computations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with little cavitation at high flow. In the second approach the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the more computationally expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization an equivalent optimization is carried out by parametrizing the blade angle and meridional shape. Two different approaches are used for conventional optimization one in which the blade angle at TE is not constrained and one in which blade angles are constrained. In both cases larger variation in head is obtained when compared with the inverse design approach. This makes it impossible to create an accurate surrogate model. Furthermore, the efficiency levels in the conventional optimization is generally lower than the inverse design based optimization.


Author(s):  
Kosuke Ashihara ◽  
Akira Goto

An optimization approach for improving turbomachinery performance was proposed based on a three-dimensional inverse design method, a Computational Fluid Dynamics (CDF) and optimization algorithm. By combining the three-dimensional inverse design method and CFD predictions, the blade loading parameters which is the major inputs for the three-dimensional inverse design method were treated as design variables and the impeller performance predicted by CFD was treated as an objective function of the optimization problem. Firstly, to clarify the effects of optimization algorithm, mixed-flow pump impellers (Ns400), with a specific speed of 400 (m3/min,m,min−1) or 0.155 (non-dimensional), were optimized to improve the impeller efficiency by using several optimization algorithm. From these results, it was confirmed that turbomachinery optimization using the three-dimensional inverse design method is a multi-peak problem and it is essential to use exploratory techniques such as Simulated Annealing. Then, a mixed-flow pump impeller (Ns1350), with a specific speed of 1350 (m3/min,m,min−1) or 0.523 (non-dimensional), was optimized to improve the impeller efficiency with constraints for suction performance by Simulated Annealing. Reasonably high efficiency and high suction performance were confirmed by comparing the CFD results with those for the previous design which employed manual optimization.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3210
Author(s):  
Wei Yang ◽  
Benqing Liu ◽  
Ruofu Xiao

Hydraulic machinery with high performance is of great significance for energy saving. Its design is a very challenging job for designers, and the inverse design method is a competitive way to do the job. The three-dimensional inverse design method and its applications to hydraulic machinery are herein reviewed. The flow is calculated based on potential flow theory, and the blade shape is calculated based on flow-tangency condition according to the calculated flow velocity. We also explain flow control theory by suppression of secondary flow and cavitation based on careful tailoring of the blade loading distribution and stacking condition in the inverse design of hydraulic machinery. Suggestions about the main challenge and future prospective of the inverse design method are given.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax4769 ◽  
Author(s):  
Alan Zhan ◽  
Ricky Gibson ◽  
James Whitehead ◽  
Evan Smith ◽  
Joshua R. Hendrickson ◽  
...  

Controlling the propagation of optical fields in three dimensions using arrays of discrete dielectric scatterers is an active area of research. These arrays can create optical elements with functionalities unrealizable in conventional optics. Here, we present an inverse design method based on the inverse Mie scattering problem for producing three-dimensional optical field patterns. Using this method, we demonstrate a device that focuses 1.55-μm light into a depth-variant discrete helical pattern. The reported device is fabricated using two-photon lithography and has a footprint of 144 μm by 144 μm, the largest of any inverse-designed photonic structure to date. This inverse design method constitutes an important step toward designer free-space optics, where unique optical elements are produced for user-specified functionalities.


2003 ◽  
Vol 125 (1) ◽  
pp. 158-165 ◽  
Author(s):  
A. Ashrafizadeh ◽  
G. D. Raithby ◽  
G. D. Stubley

This paper describes a method for calculating the shape of duct that leads to a prescribed pressure distribution on the duct walls. The proposed design method is computationally inexpensive, robust, and a simple extension of existing computational fluid dynamics methods; it permits the duct shape to be directly calculated by including the coordinates that define the shape of the duct wall as dependent variables in the formulation. This “direct design method” is presented by application to two-dimensional ideal flow in ducts. The same method applies to many problems in thermofluids, including the design of boundary shapes for three-dimensional internal and external viscous flows.


Author(s):  
Yujie Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

Most of the inverse design methods of turbomachinery experience the shortcoming where the target aerodynamic parameters need to be manually specified depending on the designers’ experience and insight, making the design result aleatory and even deviated from the real optimal solution. To tackle this problem, an experience-independent inverse design optimization method is proposed and applied to the redesign of a compressor cascade airfoil in this study. The experience-independent inverse design optimization method can automatically obtain the target pressure distribution along the cascade airfoil through the genetic algorithm, rather than through the manual specification approach. The shape of cascade airfoil is then solved by the adjoint method. The effectiveness of the experience-independent inverse design optimization method is demonstrated by two inverse design cases of the compressor cascade airfoil, i.e. the inverse design of only the suction surface and the inverse design of both the suction and pressure surfaces. The results show that the proposed inverse design method is capable of significantly improving the aerodynamic performance of the compressor cascade. At the examined flow condition, a thin airfoil profile is beneficial to flow accelerations near the leading edge and flow separation avoidance near the trailing edge. The proposed inverse design method is quite generic and can be extended to the three-dimensional inverse design of advanced compressor blades.


2002 ◽  
Vol 124 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Akira Goto ◽  
Mehrdad Zangeneh

A new approach to optimizing a pump diffuser is presented, based on a three-dimensional inverse design method and a Computational Fluid Dynamics (CFD) technique. The blade shape of the diffuser was designed for a specified distribution of circulation and a given meridional geometry at a low specific speed of 0.109 (non-dimensional) or 280 (m3/min, m, rpm). To optimize the three-dimensional pressure fields and the secondary flow behavior inside the flow passage, the diffuser blade was more fore-loaded at the hub side as compared with the casing side. Numerical calculations, using a stage version of Dawes three-dimensional Navier-Stokes code, showed that such a loading distribution can suppress flow separation at the corner region between the hub and the blade suction surface, which was commonly observed with conventional designs having a compact bowl size (small outer diameter). The improvements in stage efficiency were confirmed experimentally over the corresponding conventional pump stage. The application of multi-color oil-film flow visualization confirmed that the large area of the corner separation was completely eliminated in the inverse design diffuser.


Sign in / Sign up

Export Citation Format

Share Document