Application of a Unified Jacobian—Torsor Model for Tolerance Analysis

2003 ◽  
Vol 3 (1) ◽  
pp. 2-14 ◽  
Author(s):  
Alain Desrochers ◽  
Walid Ghie ◽  
Luc Laperrie`re

Because of uncertainties in manufacturing processes, a mechanical part always shows variations in its geometrical characteristics (ex. form, dimension, orientation and position). Quality then often reflect how well tolerances and hence, functional requirements, are being achieved by the manufacturing processes in the final product. From a design perspective, efficient methods must be made available to compute, from the tolerances on individual parts, the value of the functional requirement on the final assembly. This is known as tolerance analysis. To that end, existing methods, often based on modeling of the open kinematic chains in robotics, are classified as deterministic or statistical. These methods suppose that the assembled parts are not perfect with regard to the nominal geometry and are rigid. The rigidity of the parts implies that the places of contacts are regarded as points. The validation or the determination of a tolerance zone is therefore accomplished by a series of simulation in specific points subjected to assembly constraints. To overcome the limitations and difficulties of point based approaches, the paper proposes the unification of two existing models: the Jacobian’s matrix model, based on the infinitesimal modeling of open kinematic chains in robotics, and the tolerance zone representation model, using small displacement screws and constraints to establish the extreme limits between which points and surfaces can vary. The approach also uses interval algebra as a novel method to take tolerance boundaries into account in tolerance analysis. The approach has been illustrated on a simple two parts assembly, nevertheless demonstrating the capability of the method to handle three-dimensional geometry. The results are then validated geometrically, showing the overall soundness of the approach.

Author(s):  
Sun Jin ◽  
Hua Chen ◽  
Zhimin Li ◽  
Xinmin Lai

The small displacement torsor model is a classic three-dimensional tolerance analysis method. It uses three translational vectors and three rotational vectors to represent tolerance information in three-dimensional Euclidean space. However, the target features of this model mainly focused on planes and cylinders in previous studies. Little attention is invested to conical features and their joints which are used widely and more complex than the planar and cylindrical features. The objective of this article is to present a three-dimensional mathematical method of tolerance representation about conical surfaces and their joints based on the small displacement torsor model, and propose a mathematical model of variations and constraint relations of components of the small displacement torsor for conical surfaces caused by geometric tolerances limited by its tolerance zone. In addition, a simple example involving conical structures is used to demonstrate three-dimensional conical tolerance propagation. Both deterministic and statistical results are obtained by this model.


2011 ◽  
Vol 2-3 ◽  
pp. 352-357
Author(s):  
Xiu Heng Zhang ◽  
Hong Yi Liu ◽  
Zhong Luo

This paper presents a tolerance modeling approach based on robot kinematics theory within CAD/CAM system. Based on the differential kinematics theories, each feature of characteristics including size tolerance and geometrical tolerance was established as a corresponding small displacement torsor. In order to express the relation between the small displacement of all functional features and the functional requirement, the final expression was represented to establish the projection of analysis of the tolerance chain. A mathematical expression was obtained by the mean instead of single points, and the constraints can be represented by interval using the standard deviation, not limit deviations. After having identified the unit components and the functional requirement from the tolerance chain, we obtained the percentage contribution of each unit feature to the functional requirement. A percentage contribution can help designer to decide which tolerance is tighten or loosen. The application of the tolerance analysis approach in a simple three-dimensional sample was also discussed in this paper.


2005 ◽  
Vol 5 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Zhengshu Shen ◽  
Gaurav Ameta ◽  
Jami J. Shah ◽  
Joseph K. Davidson

This paper reviews four major methods for tolerance analysis and compares them. The methods discussed are: (1) one-dimensional tolerance charts; (2) parametric tolerance analysis, especially parametric analysis based on the Monte Carlo simulation; (3) vector loop (or kinematic) based tolerance analysis; and (4) ASU Tolerance-Map® (T-Map®) (Patent pending; nonprovisional patent application number: 09/507, 542 (2002)) based tolerance analysis. Tolerance charts deal with worst-case tolerance analysis in one direction at a time and ignore possible contributions from the other directions. Manual charting is tedious and error prone, hence, attempts have been made for automation. The parametric approach to tolerance analysis is based on parametric constraint solving; its inherent drawback is that the accuracy of the simulation results are dependent on the user-defined modeling scheme, and its inability to incorporate all Y14.5 rules. The vector loop method uses kinematic joints to model assembly constraints. It is also not fully consistent with Y14.5 standard. The ASU T-Map® based tolerance analysis method can model geometric tolerances and their interaction in truly three-dimensional context. It is completely consistent with Y14.5 standard but its use by designers may be quite challenging. The T-Map® based tolerance analysis method is still under development. Despite the shortcomings of each of these tolerance analysis methods, each may be used to provide reasonable results under certain circumstances. Through a comprehensive comparison of these methods, this paper will offer some recommendations for selecting the best method to use for a given tolerance accumulation problem.


2011 ◽  
Vol 201-203 ◽  
pp. 151-156
Author(s):  
Ben Sheng Xu ◽  
Can Wang ◽  
Mei Fa Huang

A tolerance synthesis model is established based on degree of freedom of geometric variations of features in this paper. The method allows a designer to analyze the relationship between geometric variations of features of a part and functional requirement of assembly (FRA). Firstly, tolerance is modeled with DOFs of geometric variations of features and the tolerance zone is expressed with six kinematic DOFs in three-dimensional (3D) space. Secondly, the stack-up of geometric variations of features is formulated as explicit tolerance analysis equations using kinematical coordinate systems associated with each feature. To express mathematically the relationship between given FRA values and the corresponding DOFs of geometric variations of features, the reverse synthesis equations are obtained using a matrix inversion scheme of the tolerance analysis equations. Finally, a case study is used to illustrate the proposed method.


Author(s):  
Aamer Baqai ◽  
Arsalan Shafiq

Reconfigurable Manufacturing Systems (RMS) is the recent addition in the series of different of types manufacturing systems. Various approaches deal with generation of design solutions for such systems. In this paper two and three dimensional tolerance analysis of the generated design solutions using algorithmic approach for reconfigurable manufacturing systems is carried out. In this analysis quality is considered as the key performance indicator. Among the existing techniques and methods used for tolerance evaluation, the approach of representing the tolerances as Small Displacement Torsors (SDT) is used. The modified method of graphs is selected for representing the machining process plans among the existing methods. Heuristics for the said graphs are defined. For each geometric variation the torsors are written. 2D or 3D dimensional simulation is performed and solutions are classified according to their tolerance values. The proposed methodology has wide application in the generative approach of process plan generation for reconfigurable manufacturing systems.


2018 ◽  
Vol 38 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Andrea Corrado ◽  
Wilma Polini ◽  
Giovanni Moroni ◽  
Stefano Petrò

Purpose The purpose of this work is to present a variational model able to deal with form tolerances and assembly conditions. The variational model is one of the methods proposed in literature for tolerance analysis, but it cannot deal with form tolerances and assembly conditions that may influence the functional requirements of mechanical assemblies. Design/methodology/approach This work shows how to manage the actual surfaces generated by the manufacturing process and the operating conditions inside the variational model that has been modified to integrate the manufacturing signature left on the surfaces of the parts and the operating conditions that arise during an actual assembly, such as gravity and friction. Moreover, a geometrical model was developed to numerically simulate what happens in a real assembly process and to give a reference value. Findings The new variational model was applied to a three-dimensional case study. The obtained results were compared to those of the geometrical model and to those of the variational model to validate the new model and to show the improvements. Research limitations/implications The proposed approach may be extended to other models of literature. However, its limitation is that it is able to deal with a sphere–plane contact. Practical implications Tolerance analysis is a valid tool to foresee geometric interferences among the components of an assembly before getting the physical assembly. It involves a decrease in the manufacturing costs. Originality/value The main contributions of the study are the insertion of a systematic pattern characterizing the features manufactured by a process, assembly operating conditions and development of a geometrical model to reproduce what happens in a real assembly process.


Author(s):  
Mojtaba Kamali Nejad ◽  
Alain Desrochers ◽  
Franc¸ois Villeneuve ◽  
Fre´de´ric Vignat

To perform tolerance analysis in machining, a combined approach which blends the benefits of the Model of Manufactured Part (the MMP model) and the Jacobian-Torsor model is proposed. The former is based on the CAD nominal model, where deviations are described relative to the nominal part using small displacement torsor. The later starts with the kinematic dimension chains and expresses the relative position and orientation of the various components of the chosen kinematic chain by Jacobian matrices. The Jacobian-Torsor model uses interval arithmetic for expressing the possible variation of the functional elements and for calculating the extreme bounds of the functional requirements. In the following sections, the two aforementioned models will first be outlined before the new combined approach for tolerance analysis in machining is presented. This new approach uses the advantages of the MMP model to simulate the machining operation, taking into account positioning and machining defects. Furthermore it takes advantages of the interval-based formulation which has been used in the Jacobian Torsor model. The combined approach is finally applied on an example.


Author(s):  
Ni Weihua ◽  
Yao Zhenqiang

In this study, the cylindricity error was integrated into the tolerance analysis of precision rotary assemblies using Jacobian–Torsor model. The contact method was developed to rapidly determine the actual fitting clearance through the virtual assembling of the mating cylindrical parts using Monte Carlo simulation. By modifying the expressions of small displacement torsors of the cylinder pairs, the actual fitting clearance between the bore and the shaft was taken into account, which overcame the shortage of Jacobian–Torsor model that the form error cannot be processed. The effects of the cylindricity error and the number of lobes on the actual fitting clearance and the functional requirements were analyzed in detail. The results show that the cylindricity error has significant influence on the actual fitting clearance and the final functional requirements, and it should not be ignored in the tolerance analysis for precision rotary assemblies.


2019 ◽  
Vol 39 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Ting Liu ◽  
Yan-Long Cao ◽  
Qijian Zhao ◽  
Jiangxin Yang ◽  
Lujun Cui

Purpose The purpose of this paper is to carry out an assembly tolerance analysis by means of a combined Jacobian model and skin model shape. The former is based on small displacements modeling of points using 6 × 6 transformation matrices of open kinematic chains in robotics. The latter easily models toleranced features with all kinds of geometric deviations. Design/methodology/approach This paper presents the procedure of performing tolerance analysis by means of the Jacobian model and skin model shape for assemblies. The point cloud-based discrete representative is able to model the actual toleranced surfaces instead of the ideal or associated ones in an assembly, which brings the simulation tools closer to reality. Findings The proposed method has the advantage of skin model shape which is suitable for geometric tolerances management along the product life cycle and contact analysis of kinematic small variations, as well as, with the Jacobian, enabling transformation of locally expressed parts deviations to globally expressed functional requirements. The result of the case study shows the accuracy of the method. Research limitations/implications The proposed approach has not been developed fully; other functional features such as the pyramid are still ongoing challenges. Practical implications It is an effective method for supporting design, manufacturing and inspection by providing a quantitative analysis of the effects of multi-tolerances on the final functional key characteristics and for predicting the quality level. Originality/value The paper is original in taking advantages of both Jacobian model and skin model shape to consider all geometric tolerances in assembly.


Sign in / Sign up

Export Citation Format

Share Document