Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits

2004 ◽  
Vol 126 (1) ◽  
pp. 1-9 ◽  
Author(s):  
C. Kleinstreuer ◽  
J. Koo

Fluid flow in microchannels or microtubes may differ in terms of wall frictional effects, and hence flow rates, when compared to macrochannels. Focusing on steady laminar fully developed flow of a liquid in different micro-conduits, relative surface roughness is captured in terms of a porous medium layer (PML) model. The new approach allows the evaluation of microfluidics variables as a function of PML characteristics, i.e., layer thickness and porosity, uncertainties in measuring hydraulic diameters as well as the inlet Reynolds number. Specifically, realistic values for the PML Darcy number, relative surface roughness, and actual flow area are taken into account to match observed friction factors in micro-conduits. The model predictions compared well with measured data sets for systems with significant relative roughness values. Although other surface effects may have influenced the experimental results as well, surface roughness is found to affect the friction factor and hence the flow parameters in relatively rough channels, e.g., those which are made of aluminum or stainless steel by way of micro-cutting processes.

Author(s):  
Timothy P. Brackbill ◽  
Satish G. Kandlikar

Nikuradse’s [1] work on friction factors focused on the turbulent flow regime in addition to being performed in large diameter pipes. Laminar data was collected by Nikuradse, however only low relative roughness values were examined. A recent review by Kandlikar [2] showed that the uncertainties in the laminar region of Nikuradse’s experiments were very high, and his conclusion regarding no roughness effects in the laminar region is open to question. In order to conclusively resolve this discrepancy, we have experimentally determined the effects of relative roughness ranging from 0–5.18% in micro and minichannels on friction factor and critical Reynolds numbers. Reynolds numbers were varied from 30 to 7000 and hydraulic diameters ranged from 198μm to 1084μm. There is indeed a roughness effect seen in the laminar region, contrary to what is reported by Nikuradse. The resulting friction factors are well predicted using a set of constricted flow parameters. In addition to higher friction factors, transition to turbulence was observed at decreasing Reynolds numbers as relative roughness increased.


2016 ◽  
Vol 99 ◽  
pp. 305-311 ◽  
Author(s):  
Ilenia Farina ◽  
Francesco Fabbrocino ◽  
Francesco Colangelo ◽  
Luciano Feo ◽  
Fernando Fraternali

2013 ◽  
Vol 20 (12) ◽  
pp. 2261-2269 ◽  
Author(s):  
Gaurav Pendharkar ◽  
Raghavendra Deshmukh ◽  
Rajendra Patrikar

1969 ◽  
Vol 6 (8) ◽  
pp. 955-957 ◽  
Author(s):  
R. G. HERING ◽  
T. F. SMITH

1999 ◽  
Vol 27 (5) ◽  
pp. 450-460 ◽  
Author(s):  
P.-Å. Krogstadt ◽  
R.A. Antonia

1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


Sign in / Sign up

Export Citation Format

Share Document