Exploiting Self-Similarity in Geometry for Voxel Based Solid Modeling

2004 ◽  
Vol 4 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Tushar Udeshi ◽  
Eric Parker

Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.

2009 ◽  
Vol 5 (H15) ◽  
pp. 468-469 ◽  
Author(s):  
Miguel A. de Avillez ◽  
Dieter Breitschwerdt

AbstractHigh-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregor Luetzenburg ◽  
Aart Kroon ◽  
Anders A. Bjørk

AbstractTraditionally, topographic surveying in earth sciences requires high financial investments, elaborate logistics, complicated training of staff and extensive data processing. Recently, off-the-shelf drones with optical sensors already reduced the costs for obtaining a high-resolution dataset of an Earth surface considerably. Nevertheless, costs and complexity associated with topographic surveying are still high. In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with novel build-in LiDAR sensors. Here we investigate the basic technical capabilities of the LiDAR sensors and we test the application at a coastal cliff in Denmark. The results are compared to state-of-the-art Structure from Motion Multi-View Stereo (SfM MVS) point clouds. The LiDAR sensors create accurate high-resolution models of small objects with a side length > 10 cm with an absolute accuracy of ± 1 cm. 3D models with the dimensions of up to 130 × 15 × 10 m of a coastal cliff with an absolute accuracy of ± 10 cm are compiled. Overall, the versatility in handling outweighs the range limitations, making the Apple LiDAR devices cost-effective alternatives to established techniques in remote sensing with possible fields of application for a wide range of geo-scientific areas and teaching.


2011 ◽  
Vol 15 (3) ◽  
pp. 545-563 ◽  
Author(s):  
Céline Scheidt ◽  
Jef Caers ◽  
Yuguang Chen ◽  
Louis J. Durlofsky

1997 ◽  
Vol 341 ◽  
pp. 1-18 ◽  
Author(s):  
WILLIAM J. MERRYFIELD ◽  
GREG HOLLOWAY

The physical basis for parameterizing topographic stress due to unresolved eddies is examined in a quasi-geostrophic barotropic model. Topographic stress parameterization is shown to represent two effects of eddies: attraction of the flow to a statistical equilibrium featuring topographically correlated mean currents, and dissipation of potential enstrophy. Performance is evaluated by comparing parameterized low-resolution models with explicit high-resolution models.


1993 ◽  
pp. 157-176 ◽  
Author(s):  
Mauro Figueiredo ◽  
Klaus Böhm ◽  
José Teixeira

Sign in / Sign up

Export Citation Format

Share Document