Study of the wave transformation in the central part of the Portuguese nearshore with high resolution models

2012 ◽  
pp. 539-546
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregor Luetzenburg ◽  
Aart Kroon ◽  
Anders A. Bjørk

AbstractTraditionally, topographic surveying in earth sciences requires high financial investments, elaborate logistics, complicated training of staff and extensive data processing. Recently, off-the-shelf drones with optical sensors already reduced the costs for obtaining a high-resolution dataset of an Earth surface considerably. Nevertheless, costs and complexity associated with topographic surveying are still high. In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with novel build-in LiDAR sensors. Here we investigate the basic technical capabilities of the LiDAR sensors and we test the application at a coastal cliff in Denmark. The results are compared to state-of-the-art Structure from Motion Multi-View Stereo (SfM MVS) point clouds. The LiDAR sensors create accurate high-resolution models of small objects with a side length > 10 cm with an absolute accuracy of ± 1 cm. 3D models with the dimensions of up to 130 × 15 × 10 m of a coastal cliff with an absolute accuracy of ± 10 cm are compiled. Overall, the versatility in handling outweighs the range limitations, making the Apple LiDAR devices cost-effective alternatives to established techniques in remote sensing with possible fields of application for a wide range of geo-scientific areas and teaching.


2011 ◽  
Vol 15 (3) ◽  
pp. 545-563 ◽  
Author(s):  
Céline Scheidt ◽  
Jef Caers ◽  
Yuguang Chen ◽  
Louis J. Durlofsky

1997 ◽  
Vol 341 ◽  
pp. 1-18 ◽  
Author(s):  
WILLIAM J. MERRYFIELD ◽  
GREG HOLLOWAY

The physical basis for parameterizing topographic stress due to unresolved eddies is examined in a quasi-geostrophic barotropic model. Topographic stress parameterization is shown to represent two effects of eddies: attraction of the flow to a statistical equilibrium featuring topographically correlated mean currents, and dissipation of potential enstrophy. Performance is evaluated by comparing parameterized low-resolution models with explicit high-resolution models.


2010 ◽  
Vol 10 (9) ◽  
pp. 4221-4239 ◽  
Author(s):  
M. Lin ◽  
T. Holloway ◽  
G. R. Carmichael ◽  
A. M. Fiore

Abstract. Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective using global chemical transport models with fairly coarse spatial and temporal resolutions. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) driven with chemical boundary conditions from a global model (MOZART; 1.9×1.9°) to examine the role of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent in spring (March 2001). Our analysis indicates the importance of rapid venting through deep convection that develops along the leading edge of frontal system convergence bands, which are not adequately resolved in either of two global models compared with TRACE-P aircraft observations during a frontal event. Both regional model simulations and observations show that frontal outflows of CO, O3 and PAN can extend to the upper troposphere (6–9 km). Pollution plumes in the global MOZART model are typically diluted and insufficiently lofted to higher altitudes where they can undergo more efficient transport in stronger winds. We use sensitivity simulations that perturb chemical boundary conditions in the CMAQ regional model to estimate that the O3 production over East Asia (EA) driven by PAN decomposition contributes 20% of the spatial averaged total O3 response to European (EU) emission perturbations in March, and occasionally contributes approximately 50% of the total O3 response in subsiding plumes at mountain observatories (at approximately 2 km altitude). The response to decomposing PAN of EU origin is strongly affected by the O3 formation chemical regimes, which vary with the model chemical mechanism and NOx/VOC emissions. Our high-resolution models demonstrate a large spatial variability (by up to a factor of 6) in the response of local O3 to 20% reductions in EU anthropogenic O3 precursor emissions. The response in the highly populated Asian megacities is 40–50% lower in our high-resolution models than the global model, suggesting that the source-receptor relationships inferred from the global coarse-resolution models likely overestimate health impacts associated with intercontinental O3 transport. Our results highlight the important roles of rapid convective transport, orographic forcing, urban photochemistry and heterogeneous boundary layer processes in controlling intercontinental transport; these processes may not be well resolved in the large-scale models.


2005 ◽  
Vol 35 (5) ◽  
pp. 757-774 ◽  
Author(s):  
A. M. Treguier ◽  
S. Theetten ◽  
E. P. Chassignet ◽  
T. Penduff ◽  
R. Smith ◽  
...  

Abstract The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ⅙° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more].


2019 ◽  
Vol 147 (1) ◽  
pp. 329-344 ◽  
Author(s):  
Joël Stein ◽  
Fabien Stoop

Some specific scores use a neighborhood strategy in order to reduce double penalty effects, which penalize high-resolution models, compared to large-scale models. Contingency tables based on this strategy have already been proposed, but can sometimes display undesirable behavior. A new method of populating contingency tables is proposed: pairs of missed events and false alarms located in the same local neighborhood compensate in order to give pairs of hits and correct rejections. Local tables are summed up so as to provide the final table for the whole verification domain. It keeps track of the bias of the forecast when neighborhoods are taken into account. Moreover, the scores computed from this table depend on the distance between forecast and observed patterns. This method is applied to binary and multicategorical events in a simplified framework so as to present the method and to compare the new tables with previous neighborhood-based contingency tables. The new tables are then used for the verification of two models operational at Météo-France: AROME, a high-resolution model, and ARPEGE, a large-scale global model. The comparison of several contingency scores shows that the importance of the double penalty decreases more for AROME than for ARPEGE when the neighboring size increases. Scores designed for rare events are also applied to these neighborhood-based contingency tables.


Sign in / Sign up

Export Citation Format

Share Document