Finite Element Analysis of Pulsed Laser Bending: The Effect of Melting and Solidification

2004 ◽  
Vol 71 (3) ◽  
pp. 321-326 ◽  
Author(s):  
X. Richard Zhang ◽  
Xianfan Xu

This work developes a finite element model to compute thermal and thermomechanical phenomena during pulsed laser induced melting and solidification. The essential elements of the model are handling of stress and strain release during melting and their retrieval during solidification, and the use of a second reference temperature, which is the melting point of the target material for computing the thermal stress of the resolidified material. This finite element model is used to simulate a pulsed laser bending process, during which the curvature of a thin stainless steel plate is altered by laser pulses. The bending angle and the distribution of stress and strain are obtained and compared with those when melting does not occur. It is found that the bending angle increases continulously as the laser energy is increased over the melting threshold value.

2018 ◽  
Vol 9 (1) ◽  
pp. 51-54
Author(s):  
Ádám Bertók ◽  
Viktor Gonda ◽  
Károly Széll

Abstract For metal forming problems, even for a simple forming technology, finite element analysis can provide a solution for calculating deformations, determining stress and strain distributions. The aim of this study is to create a parametric finite element model for deep drawing technology, by which technological optimization as well as theoretical problems can be solved. By performing parameter studies, numerous cases can be analyzed.


1985 ◽  
Vol 52 (1) ◽  
pp. 67-74 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper describes a two-dimensional (plane strain) elastic-plastic finite element model of rolling contact that embodies the elastic-perfectly plastic, cycle and amplitude-independent material of the Merwin and Johnson theory, but is rigorous with respect to equilibrium and continuity requirements. The rolling contact is simulated by translating a semielliptical pressure distribution. Both Hertzian and modified Hertzian pressure distributions are used to estimate the effect of plasticity on contact width and the continuity of the indentor-indentation interface. The model is tested for its ability to reproduce various features of the elastic-plastic indentation problem and the stress and strain states of single rolling contacts. This paper compares the results derived from the finite element analysis of a single, frictionless rolling contact at p0/k = 5 with those obtained from the Merwin and Johnson analysis. The finite element calculations validate basic assumptions made by Merwin and Johnson and are consistent with the development of “forward” flow. However, the comparison also reveals significant differences in the distribution of residual stress and strain components after a single contact cycle.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Edward T. Davis ◽  
Michael Olsen ◽  
Rad Zdero ◽  
Marcello Papini ◽  
James P. Waddell ◽  
...  

Hip resurfacing is an alternative to total hip arthroplasty in which the femoral head surface is replaced with a metallic shell, thus preserving most of the proximal femoral bone stock. Accidental notching of the femoral neck during the procedure may predispose it to fracture. We examined the effect of neck notching on the strength of the proximal femur. Six composite femurs were prepared without a superior femoral neck notch, six were prepared in an inferiorly translated position to create a 2 mm notch, and six were prepared with a 5 mm notch. Six intact synthetic femurs were also tested. The samples were loaded to failure axially. A finite element model of a composite femur with increasing superior notch depths computed maximum equivalent stress and strain distributions. Experimental results showed that resurfaced synthetic femurs were significantly weaker than intact femurs (mean failure of 7034 N, p<0.001). The 2 mm notched group (mean failure of 4034 N) was significantly weaker than the un-notched group (mean failure of 5302 N, p=0.018). The 5 mm notched group (mean failure of 2808 N) was also significantly weaker than both the un-notched and the 2 mm notched groups (p<0.001, p=0.023, respectively). The finite element model showed the maximum equivalent strain in the superior reamed cancellous bone increasing with corresponding notch size. Fracture patterns inferred from equivalent stress distributions were consistent with those obtained from mechanical testing. A superior notch of 2 mm weakened the proximal femur by 24%, and a 5 mm notch weakened it by 47%. The finite element analysis substantiates this showing increasing stress and strain distributions within the prepared femoral neck with increasing notch depth.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2016 ◽  
Vol 48 ◽  
pp. 888 ◽  
Author(s):  
Edward Nyman ◽  
Marcel L. Ingels ◽  
Amirhesam Amerinatanzi ◽  
Rodney K. Summers ◽  
Timothy E. Hewett ◽  
...  

2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


2013 ◽  
Vol 774-776 ◽  
pp. 25-29
Author(s):  
Cong Fang Hu ◽  
Yuan Qiang Tan

Based on the tandem sealing structure at the end of the shaft,a finite element model of rubber O-rings has been established and the sealing performance of rubber O-ring has been analyzed. There is an un-uniform compression among these O-rings which lead to the sealing failure. Under different friction factors, several groups of the rubber O-rings have been analyzed, finding that the friction factor is the reason of un-uniform compression. The effect of different average compression rate has been investigated, which has been integrated in the sealing criteria for the tandem O-rings, providing a reference for the optimization of tandem sealing structure at the end of the shaft. According to the sealing criteria for a single O-ring, the sealing criteria for the tandem O-rings is built.


Sign in / Sign up

Export Citation Format

Share Document