Surface Temperature in Oscillating Sliding Interfaces

2005 ◽  
Vol 127 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. Mansouri ◽  
M. M. Khonsari

A model is developed to predict the behavior of two sliding bodies undergoing oscillatory motion. A set of four dimensionless groups is introduced to characterize the transient dimensionless surface temperature rise. They are: the Peclet number Pe, the Biot number Bi, the amplitude of oscillation A, and the Hertzian semi-contact width α. Also considered in the analysis is the effect of the ratio β=A/α of the amplitude to the semi-contact width. The results of a series of simulations, covering a range of these independent parameters, are presented, and examples are provided to illuminate the utility of the model.

Author(s):  
M. Mansouri ◽  
M. M. Khonsari

A model is developed to predict the behavior of two sliding bodies undergoing oscillatory motion. A set of four dimensionless groups is introduced to characterize the transient dimensionless surface temperature rise. They are: the Peclet number Pe, the Biot number Bi, the amplitude of oscillation A, and the Hertzian semi-contact width α. Also considered in the analysis is the effect of the ratio β = A/α of the amplitude to the semi-contact width. The results of a series of simulations, covering a range of these independent parameters, are presented and examples are provided to illuminated the utility of the model.


1993 ◽  
Vol 115 (1) ◽  
pp. 1-9 ◽  
Author(s):  
X. Tian ◽  
F. E. Kennedy

In this paper, a three-dimensional model of a semi-infinite layered body is used to predict steady-state maximum surface temperature rise at the sliding contact interface for the entire range of Peclet number. A set of semi-empirical solutions for maximum surface temperature problems of sliding layered bodies is obtained by using integral transform, finite element, heuristic and multivariable regression techniques. Two dimensionless parameters, A and Dp, which relate to coating thickness, contact size, sliding speed and thermal properties of both coating and substrate materials, are found to be the critical factors determining the effect of surface film on the surface temperature rise at a sliding contact interface. A semi-empirical solution for maximum surface temperature problems of homogeneous bodies, which covers the whole range of Peclet number, is also obtained.


Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


2009 ◽  
Vol 39 (11) ◽  
pp. 2685-2710 ◽  
Author(s):  
Andrew J. Wells ◽  
Claudia Cenedese ◽  
J. Thomas Farrar ◽  
Christopher J. Zappa

Abstract The aqueous thermal boundary layer near to the ocean surface, or skin layer, has thickness O(1 mm) and plays an important role in controlling the exchange of heat between the atmosphere and the ocean. Theoretical arguments and experimental measurements are used to investigate the dynamics of the skin layer under the influence of an upwelling flow, which is imposed in addition to free convection below a cooled water surface. Previous theories of straining flow in the skin layer are considered and a simple extension of a surface straining model is posed to describe the combination of turbulence and an upwelling flow. An additional theory is also proposed, conceptually based on the buoyancy-driven instability of a laminar straining flow cooled from above. In all three theories considered two distinct regimes are observed for different values of the Péclet number, which characterizes the ratio of advection to diffusion within the skin layer. For large Péclet numbers, the upwelling flow dominates and increases the free surface temperature, or skin temperature, to follow the scaling expected for a laminar straining flow. For small Péclet numbers, it is shown that any flow that is steady or varies over long time scales produces only a small change in skin temperature by direct straining of the skin layer. Experimental measurements demonstrate that a strong upwelling flow increases the skin temperature and suggest that the mean change in skin temperature with Péclet number is consistent with the theoretical trends for large Péclet number flow. However, all of the models considered consistently underpredict the measured skin temperature, both with and without an upwelling flow, possibly a result of surfactant effects not included in the models.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 319-324 ◽  
Author(s):  
H. Rubin ◽  
A. Rabideau

This study presents an approximate analytical model, which can be useful for the prediction and requirement of vertical barrier efficiencies. A previous study by the authors has indicated that a single dimensionless parameter determines the performance of a vertical barrier. This parameter is termed the barrier Peclet number. The evaluation of barrier performance concerns operation under steady state conditions, as well as estimates of unsteady state conditions and calculation of the time period requires arriving at steady state conditions. This study refers to high values of the barrier Peclet number. The modeling approach refers to the development of several types of boundary layers. Comparisons were made between simulation results of the present study and some analytical and numerical results. These comparisons indicate that the models developed in this study could be useful in the design and prediction of the performance of vertical barriers operating under conditions of high values of the barrier Peclet number.


1979 ◽  
Vol 44 (4) ◽  
pp. 1218-1238
Author(s):  
Arnošt Kimla ◽  
Jiří Míčka

The problem of convective diffusion toward the sphere in laminar flow around the sphere is solved by combination of the analytical and net methods for the region of Peclet number λ ≥ 1. The problem was also studied for very small values λ. Stability of the solution has been proved in relation to changes of the velocity profile.


1983 ◽  
Vol 48 (6) ◽  
pp. 1571-1578 ◽  
Author(s):  
Ondřej Wein

Theory has been formulated of a convective rotating spherical electrode in the creeping flow regime (Re → 0). The currently available boundary layer solution for Pe → ∞ has been confronted with an improved similarity description applicable in the whole range of the Peclet number.


Sign in / Sign up

Export Citation Format

Share Document