Numerical Simulation of Incompressible Laminar Flow over Three-Dimensional Rectangular Cavities

2004 ◽  
Vol 126 (6) ◽  
pp. 919-927 ◽  
Author(s):  
H. Yao ◽  
R. K. Cooper ◽  
S. Raghunathan

This paper presents results of investigations of unsteady incompressible flow past three-dimensional cavities, where there is a complex interaction between the external flow and the recirculating flow inside the cavity. A computational fluid dynamics approach is used in the study. The simulation is based on the solution of the unsteady Navier-Stokes equations for three-dimensional incompressible flow by using finite difference schemes. The cavity is assumed to be rectangular in geometry, and the flow is assumed to be laminar. Typical results of computation are presented, showing the effects of the Reynolds number, cavity geometry, and inflow condition on the cavity flow fields. The results show that high Reynolds numbers, with deep cavity and shallow cavity flows can become unsteady with Kelvin-Helmholtz instability oscillations and exhibiting a three-dimensional nature, with Taylor-Go¨rtler longitudinal vortices on the floor and longitudinal vortex structures on the shear layer. At moderate Reynolds numbers the shallow cavity flow is more stable than deep cavity flows. For a given Reynolds number the flow structure is affected by the thickness of the inflow boundary layer with a significant interaction between the external flow and the recirculating flow inside the cavity.

Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


1988 ◽  
Vol 110 (3) ◽  
pp. 289-296 ◽  
Author(s):  
F. Durst ◽  
J. C. F. Pereira

This paper presents results of numerical studies of the impulsively starting backward-facing step flow with the step being mounted in a plane, two-dimensional duct. Results are presented for Reynolds numbers of Re = 10; 368 and 648 and for the last two Reynolds numbers comparisons are given between experimental and numerical results obtained for the final steady state flow conditions. In the computational scheme, the convective terms in the momentum equations are approximated by a 13-point quadratic upstream weighted finite-difference scheme and a fully implicit first order forward differencing scheme is used to discretize the temporal derivatives. The computations show that for the higher Reynolds numbers, the flow starts to separate on the lower and upper corners of the step yielding two disconnected recirculating flow regions for some time after the flow has been impulsively started. As time progresses, these two separated flow regions connect up and a single recirculating flow region emerges. This separated flow region stays attached to the step, grows in size and approaches, for the time t → ∞, the dimensions measured and predicted for the separation region for steady laminar backward-facing flow. For the Reynolds number Re = 10 the separation starts at the bottom of the backward-facing step and the separation region enlarges with time until the steady state flow pattern is reached. At the channel wall opposite to the step and for Reynolds number Re = 368, a separated flow region is observed and it is shown to occur for some finite time period of the developing, impulsively started backward-facing step flow. Its dimensions change with time and reduce to zero before the steady state flow pattern is reached. For the higher Reynolds number Re = 648, the secondary separated flow region opposite to the wall is also present and it is shown to remain present for t → ∞. Two kinds of the inlet conditions were considered; the inlet mean flow was assumed to be constant in a first study and was assumed to increase with time in a second one. The predicted flow field for t → ∞ turned out to be identical for both cases. They were also identical to the flow field predicted for steady, backward-facing step flow using the same numerical grid as for the time-dependent predictions.


2010 ◽  
Vol 14 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Afshin Mohsenzadeh ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

Numerical simulations of forced convective incompressible flow in a horizontal plane channel with adiabatic walls over two isothermal tandem triangular cylinders of equal size are presented to investigate the effect of wall proximity of obstacles, gap space (i.e. gap between two squares), and Reynolds number. Computations have been carried out for Reynolds numbers of (based on triangle width) 100, 250, and 350. Results show that, wall proximity has different effect on first and second triangle in fluid characteristics especially in lower gap spaced, while for heat transfer a fairly same behavior was seen.


2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


Author(s):  
Abdulrahman Alenezi ◽  
Abdulrahman Almutairi ◽  
Hamad Alhajeri ◽  
Abdulaziz Gamil ◽  
Faisal Alshammari

Abstract A detailed heat transfer numerical study of a three-dimensional impinging jet on a roughened isothermal surface is presented and is investigated from flow physics vantage point under the influence of different parameters. The effects of the Reynolds number, roughness location, and roughness dimension on the flow physics and heat transfer parameters are studied. Additionally, the relations between average heat transfer coefficient (AHTC) and flow physics including pressure, wall shear and flow vortices with thermodynamic nonequilibrium are offered. This paper studies the effect of varying both location and dimension of the roughness element which took the shape of square cross-sectional continuous ribs to deliver a favorable trade-off between total pressure loss and heat transfer rate. The roughness element was tested for three different radial locations (R/D) = 1, 1.5, and 2 and at each location its height (i.e., width) (e) was changed from 0.25 to 1 mm in incremental steps of 0.25. The study used a jet angle (α) of 90 deg, jet-to-target distance (H/D = 6), and Re ranges from 10,000 to 50,000, where H is the vertical distance between the target plate and jet exit. The results show that the AHTC can be significantly affected by changing the geometry and dimensions of the roughness element. This variation can be either an augmentation of, or decrease in, the (HTC) when compared with the baseline case. An enhancement of 12.9% in the AHTC was achieved by using optimal location and dimensions of the roughness element at specific Reynolds number. However, a diminution between 10% and 30% in (AHTC) was attained by the use of rib height e = 1 mm at Re = 50k. The variation of both rib location and height showed better contribution in increasing heat transfer for low-range Reynolds numbers.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


Author(s):  
Orest Shardt ◽  
J. J. Derksen ◽  
Sushanta K. Mitra

When droplets collide in a shear flow, they may coalesce or remain separate after the collision. At low Reynolds numbers, droplets coalesce when the capillary number does not exceed a critical value. We present three-dimensional simulations of droplet coalescence in a simple shear flow. We use a free-energy lattice Boltzmann method (LBM) and study the collision outcome as a function of the Reynolds and capillary numbers. We study the Reynolds number range from 0.2 to 1.4 and capillary numbers between 0.1 and 0.5. We determine the critical capillary number for the simulations (0.19) and find that it is does not depend on the Reynolds number. The simulations are compared with experiments on collisions between confined droplets in shear flow. The critical capillary number in the simulations is about a factor of 25 higher than the experimental value.


1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


Sign in / Sign up

Export Citation Format

Share Document