Modeling Two-Phase Flow in Pipe Bends

2004 ◽  
Vol 127 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Savalaxs Supa-Amornkul ◽  
Frank R. Steward ◽  
Derek H. Lister

In order to have a better understanding of the interaction between the two-phase steam-water coolant in the outlet feeder pipes of the primary heat transport system of some CANDU reactors and the piping material, themalhydraulic modelling is being performed with a commercial computational fluid dynamics (CFD) code—FLUENT 6.1. The modeling has attempted to describe the results of flow visualization experiments performed in a transparent feeder pipe with air-water mixtures at temperatures below 55°C. The CFD code solves two sets of transport equations—one for each phase. Both phases are first treated separately as homogeneous. Coupling is achieved through pressure and interphase exchange coefficients. A symmetric drag model is employed to describe the interaction between the phases. The geometry and flow regime of interest are a 73 deg bend in a 5.9cm diameter pipe containing water with a Reynolds number of ∼1E5-1E6. The modeling predicted single-phase pressure drop and flow accurately. For two-phase flow with an air voidage of 5–50%, the pressure drop measurements were less well predicted. Furthermore, the observation that an air-water mixture tended to flow toward the outside of the bend while a single-phase liquid layer developed at the inside of the bend was not predicted. The CFD modeling requires further development for this type of geometry with two-phase flow of high voidage.

Author(s):  
S. Supa-Amornkul ◽  
F. R. Steward ◽  
D. H. Lister

In order to have a better understanding of the interaction between the two-phase steam-water coolant in the outlet feeder pipes of the primary heat transport system of some CANDU reactors and the piping material, themalhydraulic modelling is being performed with a commercial CFD (computational fluid dynamics) code — Fluent 6.1. The modelling has attempted to describe the results of flow visualization experiments performed in a transparent feeder pipe with air-water mixtures at temperatures below 55°C. The CFD code solves two sets of transport equations — one for each phase. Both phases are first treated separately as homogeneous. Coupling is achieved through pressure and interphase exchange coefficients. A symmetric drag model is employed to describe the interaction between the phases. The geometry and flow regime of interest are a 73° bend in a 5.9 cm-diameter pipe containing water with a Reynolds number of ∼105–106. The modelling predicted single-phase pressure drop and flow accurately. For two-phase flow with an air voidage of 5%–50%, the pressure drop measurements were less well predicted. Furthermore, the observation that an air-water mixture tended to flow toward the outside of the bend while a single-phase liquid layer developed at the inside of the bend was not predicted. The CFD modelling requires further development for this type of geometry with two-phase flow of high voidage.


1998 ◽  
Vol 120 (1) ◽  
pp. 152-159 ◽  
Author(s):  
H. Kumamaru ◽  
Y. Fujiwara

An annular two-phase flow model has been proposed to predict the pressure drop and heat transfer of magnetohydrodynamic (MHD) gas-liquid metal two-phase flow in a rectangular channel for the case of high void fraction. The model for a rectangular channel, in which the applied magnetic field is perpendicular to the short side of the channel cross-section, nearly predicts Inoue et al.’s experimental data on the MHD pressure drop. For fusion reactor conditions, the model shows calculated results that the MHD pressure drop for two-phase flow can be lowered to 10 percent of that of the single-phase liquid flow and the heat transfer coefficient can be increased by a factor of two or more over that of the single-phase liquid flow.


Author(s):  
Y. S. Muzychka ◽  
M. M. Awad

The Lockhart-Martinelli method for predicting two phase flow pressure drop is examined from the point of view of asymptotic modelling. Comparisons are made with the Lockhart-Martinelli method, the Chisholm method, and the Turner-Wallis method. An alternative approach for predicting two phase flow pressure drop is developed using superposition of three pressure gradients: single phase liquid, single phase gas, and interfacial pressure drop. This new approach allows for the interfacial pressure drop to be easily modelled for each type of flow regime such as: bubbly, mist, churn, plug, stratified, and annular, or based on the classical laminar-laminer, turbulent-turbulent, laminar-turbulent and turbulent-laminar flow regimes proposed by Lockhart and Martinelli.


2019 ◽  
Author(s):  
Zurwa Khan ◽  
Reza Tafreshi ◽  
Matthew Franchek ◽  
Karolos Grigoriadis

Abstract Pressure drop estimation across orifices for two-phase liquid-gas flow is essential to size valves and pipelines and decrease the probability of unsafe consequences or high costs in petroleum, chemical, and nuclear industries. While numerically modeling flow across orifices is a complex task, it can assess the effect of numerous orifice designs and operation parameters. In this paper, two-phase flow across orifices has been numerically modeled to investigate the effect of different fluid combinations and orifice geometries on pressure drop. The orifice is assumed to be located in a pipe with fully-developed upstream and downstream flow. Two liquid-gas fluid combinations, namely water-air, and gasoil liquid-gas mixture were investigated for different orifice to pipe area ratios ranging from 0.01 to 1 for the superficial velocity of 10 m/s. Volume of Fluid multiphase flow model along with k-epsilon turbulence model were used to estimate the pressure distribution of liquid-gas mixture along the pipe. The numerical model was validated for water-air with mean relative error less than 10.5%. As expected, a decrease in orifice to pipe area ratio resulted in larger pressure drops due to an increase in the contraction coefficients of the orifice assembly. It was also found that water-air had larger pressure drops relative to gasoil mixture due to larger vortex formation downstream of orifices. In parallel, a mechanistic model to directly estimate the local two-phase pressure drop across orifices was developed. The gas void fraction was predicted using a correlation by Woldesemayat and Ghajar, and applied to separated two-phase flow undergoing contraction and expansion due to an orifice. The model results were validated for different orifices and velocities, with the overall relative error of less than 40%, which is acceptable due to the uncertainties associated with measuring experimental pressure drop. Comparison of the developed numerical and mechanistic model showed that the numerical model is able to achieve a higher accuracy, while the mechanistic model requires minimal computation.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


Author(s):  
Eon Soo Lee ◽  
Carlos H. Hidrovo ◽  
Julie E. Steinbrenner ◽  
Fu-Min Wang ◽  
Sebastien Vigneron ◽  
...  

This experimental paper presents a study of gas-liquid two phase flow in rectangular channels of 500μm × 45μm and 23.7mm long with different wall conditions of hydrophilic and hydrophobic surface, in order to investigate the flow structures and the corresponding friction factors of simulated microchannels of PEMFC. The main flow in the channel is air and liquid water is injected at a single or several discrete locations in one side wall of the channel. The flow structure of liquid water in hydrophilic wall conditioned channel starts from wavy flow, develops to stable stratified film flow, and then transits to unstable fluctuating film flow, as the pressure drop and the flow velocity of air increase from around 10 kPa to over 100 kPa. The flow structure in hydrophobic channel develops from the slug flow to slug-and-film flow with increasing pressure drop and flow velocity. The pressure drop for single phase flow is measured for a base line study, and the fRe product is in close agreement with the theoretical value (fRe = 85) of the conventional laminar flow of aspect ratio 1:11. At the low range of water injection rate, the gas phase fRe product of the two phase flow based on the whole channel area was not substantially affected by the water introduction. However, as the water injection rate increases up to 100 μL/min, the gas phase fRe product based on the whole channel area deviates highly from the single phase theoretical value. The gas phase fRe product with the actual gas phase area corrected by the liquid phase film thickness agrees with the single phase theoretical value.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document