Influence of Wall Proximity on the Lift and Drag of a Particle in an Oscillatory Flow

2004 ◽  
Vol 127 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Paul F. Fischer ◽  
Gary K. Leaf ◽  
Juan M. Restrepo

We report on the lift and drag forces on a stationary sphere subjected to a wall-bounded oscillatory flow. We show how these forces depend on two parameters, namely, the distance between the particle and the bounding wall, and on the frequency of the oscillatory flow. The forces were obtained from numerical solutions of the unsteady incompressible Navier–Stokes equations. For the range of parameters considered, a spectral analysis found that the forces depended on a small number of degrees of freedom. The drag force manifested little change in character as the parameters varied. On the other hand, the lift force varied significantly: We found that the lift force can have a positive as well as a negative time-averaged value, with an intermediate range of external forcing periods in which enhanced positive lift is possible. Furthermore, we determined that this force exhibits a viscous-dominated and a pressure-dominated range of parameters.

1999 ◽  
Vol 389 ◽  
pp. 101-118 ◽  
Author(s):  
J. L. STEVENS ◽  
J. M. LOPEZ ◽  
B. J. CANTWELL

A combined experimental and numerical investigation is presented of the multiple oscillatory states that exist in the flows produced in a completely filled, enclosed, circular cylinder driven by the constant rotation of one of its endwalls. The flow in a cylinder of height to radius ratio 2.5 is interrogated experimentally using flow visualization and digitized images to extract quantitative temporal information. Numerical solutions of the axisymmetric Navier–Stokes equations are used to study the same flow over a range of Reynolds numbers where the flow is observed to remain axisymmetric. Three oscillatory states have been identified, two of them are periodic and the third is quasi-periodic with a modulation frequency much smaller than the base frequency. The range of Reynolds numbers for which the quasi-periodic flow exists brackets the switch between the two periodic states. The results from the combined experimental and numerical study agree both qualitatively and quantitatively, providing unambiguous evidence of the existence and robustness of these multiple time-dependent states.


2015 ◽  
Vol 20 (3) ◽  
pp. 346-368 ◽  
Author(s):  
Zhendong Luo

We firstly employ a proper orthogonal decomposition (POD) method, Crank–Nicolson (CN) technique, and two local Gaussian integrals to establish a PODbased reduced-order stabilized CN mixed finite element (SCNMFE) formulation with very few degrees of freedom for non-stationary parabolized Navier–Stokes equations. Then, the error estimates of the reduced-order SCNMFE solutions, which are acted as a suggestion for choosing number of POD basis and a criterion for updating POD basis, and the algorithm implementation for the POD-based reduced-order SCNMFE formulation are provided, respectively. Finally, some numerical experiments are presented to illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order SCNMFE formulation is feasible and efficient for finding numerical solutions of the non-stationary parabolized Navier–Stokes equations.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


Author(s):  
Pierre Ferrant ◽  
Lionel Gentaz ◽  
Bertrand Alessandrini ◽  
Romain Luquet ◽  
Charles Monroy ◽  
...  

This paper documents recent advances of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach, a method for simulating fully nonlinear wave-body interactions including viscous effects. The methods efficiently combines a fully nonlinear potential flow description of undisturbed wave systems with a modified set of RANS with free surface equations accounting for the interaction with a ship or marine structure. Arbitrary incident wave systems may be described, including regular, irregular waves, multidirectional waves, focused wave events, etc. The model may be fixed or moving with arbitrary speed and 6 degrees of freedom motion. The extension of the SWENSE method to 6 DOF simulations in irregular waves as well as to manoeuvring simulations in waves are discussed in this paper. Different illlustative simulations are presented and discussed. Results of the present approach compare favorably with available reference results.


2000 ◽  
Author(s):  
Eivind Helland ◽  
Rene Occelli ◽  
Lounes Tadrist

Abstract Simulations of 2D gas-particle flows in a vertical riser using a mixed Eulerian-Lagrangian approach are addressed. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with a coupling term between the gas and solid phases due to drag forces. The motion of particles is treated by a Lagrangian approach and the particles are assumed to interact through binary, instantaneous, non-frontal, inelastic collisions with friction. In this paper different particle clustering effects in the gas-particle flow is investigated.


2019 ◽  
Vol 224 ◽  
pp. 02003
Author(s):  
Andrey Shobukhov

We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of the linear electric potential variation for the uniform ion distribution and compare analytical results with numerical solutions. The developed model successfully describes the stability loss of the steady state solution and demonstrates the emerging of spatially non-uniform distribution of the electric potential. However, this model should be generalized by accounting for the convective movement via the addition of the Navier-Stokes equations in order to substantially extend its application field.


Author(s):  
Bakhtier Farouk ◽  
Murat K. Aktas

Formation of vortical flow structures in a rectangular enclosure due to acoustic streaming is investigated numerically. The oscillatory flow field in the enclosure is created by the vibration of a vertical side wall of the enclosure. The frequency of the wall vibration is chosen such that a standing wave forms in the enclosure. The interaction of this standing wave with the horizontal solid walls leads to the production of Rayleigh type acoustic streaming flow patterns in the enclosure. All four walls of the enclosure considered are thermally insulated. The fully compressible form of the Navier-Stokes equations is considered and an explicit time-marching algorithm is used to explicitly track the acoustic waves. Numerical solutions are obtained by employing a highly accurate flux corrected transport (FCT) algorithm for the convection terms. A time-splitting technique is used to couple the viscous and diffusion terms of the full Navier-Stokes equations. Non-uniform grid structure is employed in the computations. The simulation of the primary oscillatory flow and the secondary (steady) streaming flows in the enclosure is performed. Streaming flow patterns are obtained by time averaging the primary oscillatory flow velocity distributions. The effect of the amount of wall displacement on the formation of the oscillatory flow field and the streaming structures are studied. Computations indicate that the nonlinearity of the acoustic field increases with increasing amount of the vibration amplitude. The form and the strength of the secondary flow associated with the oscillatory flow field and viscous effects are found to be strongly correlated to the maximum displacement of the vibrating wall. Total number of acoustic streaming cells per wavelength is also determined by the strength and the level of the nonlinearity of the sound field in the resonator.


Sign in / Sign up

Export Citation Format

Share Document