Numerical Simulation for Three Dimensional Elastic-Plastic Contact with Hardening Behavior

2005 ◽  
Vol 127 (3) ◽  
pp. 494-502 ◽  
Author(s):  
Fan Wang ◽  
Leon M. Keer

An elastic-plastic contact (EPC) solution and code is developed using a modified semi-analytical method. The indentation tests with different hardening behavior are simulated by using the developed EPC code. The distributions of contact pressure, residual stress and plastic strain are obtained and compared with the results of the finite element method models without hardening. Some techniques, such as fast Fourier transform and fast convergence method, are used to increase the computation speed.

2021 ◽  
Vol 264 ◽  
pp. 03020
Author(s):  
Alexandra Bestuzheva ◽  
Ivan Chubatov

To prevent the development of settlements and heave-up of facilities, the compensation grouting technique is used. The article reports the data of numerical simulation of the compensation grouting process as illustrated by the physical experiment performed by Luca Mazini, Ph.D. from La Sapienza Rome University (Rome, Italy). Simulation is performed with the JulyS program developed by the article authors for the ECM. The program implements the finite element method in a three-dimensional approach with Professor L.N.Rasskazov’s non-linear “energy” soil model. Different simulation of supplementary volume arrangement in the sandy soil under grouting in the finite element method approach is reviewed. The numerical simulation data are compared with the field experiment.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


Sign in / Sign up

Export Citation Format

Share Document