scholarly journals Where Does CAM Stand?

2007 ◽  
Vol 129 (01) ◽  
pp. 30-32
Author(s):  
Jean Thilmany

This article describes various engineering ways to use computers in manufacturing industry. Streamlining computer-aided design (CAD) and computer-aided manufacturing (CAM) handoff has long been the dream of engineering organizations that face handoff issues every day. The company, Protomold Co. Inc., ties CAD directly with CAM, to do away with requiring a human in the loop. It makes plastic injection-molded parts from customers’ CAD models. A Minnesota company has nearly automated its mold making. Software designs the mold automatically and automatically commands milling machines. The article also highlights that CAM systems of the future should include easy workarounds that any company could use to customize the software. Like other computer-aided engineering applications, manufacturing software is being pushed forward, although innovation and research is mainly the purview of academics. Researchers are focusing on considering rapid prototyping for making CAD and CAM work together in future.

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2013 ◽  
Vol 411-414 ◽  
pp. 1801-1804
Author(s):  
Yong Liu ◽  
Da Zheng Wang ◽  
Xue Shuang Len

This paper describes a strategy to fulfill the needs of the 21st century machinery manufacturing industry, especially for the industry that produces the low repetitive and high productmix components using machining centres. The approach of development strategy is emphasized in developing of computer integrated manufacturing system (CIMS). The system comprises of computer aided design (CAD) and computer aided manufacturing (CAM) modules, which is supported by common and working databases. Focuses on computer-integrated manufacturing's macro aspects and its future development strategy implications. Defines CIMS at the macro and micro level and the various factors that strongly call for the implementation of CIMS. After going into the advantages, concludes with development strategy implications for the future.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Jianyang Zhu ◽  
Xiaozhi Qi

This paper proposes a new family of single degree of freedom (DOF) deployable mechanisms derived from the threefold-symmetric deployable Bricard mechanism. The mobility and geometry of original threefold-symmetric deployable Bricard mechanism is first described, from the mobility characterstic of this mechanism, we show that three alternate revolute joints can be replaced by a class of single DOF deployable mechanisms without changing the single mobility characteristic of the resultant mechanisms, therefore leading to a new family of Bricard-derived deployable mechanisms. The computer-aided design (CAD) models are used to demonstrate these derived novel mechanisms. All these mechanisms can be used as the basic modules for constructing large volume deployable mechanisms.


Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Soumik Sarkar ◽  
Adarsh Krishnamurthy

Abstract Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new representation.


Author(s):  
Hamza Arshad ◽  
Vrushank Phadnis ◽  
Alison Olechowski

Abstract We present the results of an experiment investigating two different modes of collaboration on a series of computer-aided design (CAD) tasks. Inspired by the pair programming literature, we anticipate that partners working in a fully synchronous collaborative CAD environment will achieve different levels of quality in CAD models depending on their mode of collaboration — one in which the pair is free to work in parallel, and another where the pair must coordinate to share one control. We found that a shared CAD control led to significantly better overall CAD quality than parallel CAD control. In addition, the shared control mode led to more complete and consistent CAD models, as well as the tendency for participants to follow instructions to correctly replicate features for the design task. As is predicted in the literature, a trade-off relationship (albeit weak) between quality and speed via the parallel collaboration was found. In contrast, the shared control mode shows no clear relationship between speed and quality. Collaborative CAD is increasingly seen as an appealing tool for modern product design teams. This study suggests that the benefits of this tool are not solely the effect of the tool itself, but result from the collaboration style of the designers using the tool.


2014 ◽  
Vol 597 ◽  
pp. 417-420
Author(s):  
Jeremy Zheng Li

The tooling and fixture play important roles in manufacturing and production. It affects both product quality and quantity. Better tooling and fixture can also promote cost-effective manufacturing process. This paper introduces a new type of universal clamping mechanism based on computer-aided 3D modeling, engineering structural analysis, and prototype testing. It can be applied to easily and reliably clamp different geometrical shape of work pieces per user requirements. This new clamping mechanism, with less moving components, can assist manufacturing industry for high speed production, easy part handling, precise clamping, and lower tooling cost. Keywords: Computer-aided design, automated production, 3D modeling, cost-effective, high speed manufacturing, engineering analysis, optimization, efficient;


Author(s):  
Yogesh H. Kulkarni ◽  
Anil Sahasrabudhe ◽  
Mukund Kale

Computer-aided design (CAD) models of thin-walled solids such as sheet metal or plastic parts are often reduced dimensionally to their corresponding midsurfaces for quicker and fairly accurate results of computer-aided engineering (CAE) analysis. Computation of the midsurface is still a time-consuming and mostly, a manual task due to lack of robust and automated techniques. Most of the existing techniques work on the final shape (typically in the form of boundary representation, B-rep). Complex B-reps make it hard to detect subshapes for which the midsurface patches are computed and joined, forcing usage of hard-coded heuristic rules, developed on a case-by-case basis. Midsurface failures manifest in the form of gaps, overlaps, nonmimicking input model, etc., which can take hours or even days to correct. The research presented here proposes to address these problems by leveraging feature-information available in the modern CAD models, and by effectively using techniques like simplification, abstraction, and decomposition. In the proposed approach, first, the irrelevant features are identified and removed from the input FbCAD model to compute its simplified gross shape. Remaining features then undergo abstraction to transform into their corresponding generic Loft-equivalents, each having a profile and a guide curve. The model is then decomposed into cellular bodies and a graph is populated, with cellular bodies at the nodes and fully overlapping-surface-interfaces at the edges. The nodes are classified into midsurface-patch generating nodes (called “solid cells” or sCells) and interaction-resolving nodes (“interface cells” or iCells). In a sCell, a midsurface patch is generated either by offset or by sweeping the midcurve of the owner-Loft-feature's profile along with its guide curve. Midsurface patches are then connected in the iCells in a generic manner, thus resulting in a well-connected midsurface with minimum failures. Output midsurface is then validated topologically for correctness. At the end of this paper, real-life parts are used to demonstrate the efficacy of the proposed approach.


Author(s):  
Irfan Mustafa ◽  
Tsz Ho Kwok

Abstract Recently the availability of various materials and ongoing research in developing advanced systems for multi-material additive manufacturing (MMAM) have opened doors for innovation in functional products. One major concern of MMAM is the strength at the interface between materials. This paper hypothesizes overlapping and interlacing materials to enhance the bonding strength. To test this hypothesis, we need a computer-aided manufacturing (CAM) tool that can process the overlapped material regions. However, existing computational tools lack key multi-material design processing features and have certain limitations in making full use of the material information, which restricts the testing of our hypothesis. Therefore, this research also develops a new MMAM slicing framework that efficiently identifies the boundaries for materials to develop different advanced features. By modifying a ray tracing technology, we develop layered depth material images (LDMI) to process the material information from computer-aided design (CAD) models for slicing and process planning. Each sample point in the LDMI has associated material and geometric properties that are used to identify the multi-material regions. Based on the material information in each slice, interlocking joint (T-Joint) and interlacing infill are generated in the regions with multiple materials. Tensile tests have been performed to verify the enhancement of mechanical properties by the use of overlapping and interlacing materials.


Sign in / Sign up

Export Citation Format

Share Document