DNS of Drag-Reducing Turbulent Channel Flow With Coexisting Newtonian and Non-Newtonian Fluid

2005 ◽  
Vol 127 (5) ◽  
pp. 929-935 ◽  
Author(s):  
Bo Yu ◽  
Yasuo Kawaguchi

In the present study, we numerically investigated drag-reducing turbulent channel flows by surfactant additives. Surfactant additives were assumed to be uniformly distributed in the entire flow region by turbulent convection and diffusion, etc., but it was assumed that the shear-induced structure (SIS) (network of rod-like micelles) could form either in the region next to the walls or in the center region of the channel, making the fluid viscoelastic. In other regions surfactant additives were assumed to be incapable of building a network structure, and to exist in the form of molecules or micelles that do not affect the Newtonian properties of the fluid. With these assumptions, we studied the drag-reducing phenomenon with coexisting Newtonian and non-Newtonian fluids. From the study we identified the effectiveness of the network structures at different flow regions, and showed that the phenomenon of drag-reduction (DR) by surfactant additives is not only closely associated with the reduction of Reynolds shear stress but also related to the induced viscoelastic shear stress.

Author(s):  
Bo Yu ◽  
Yasuo Kawaguchi

In the present study, we numerically investigated drag-reducing turbulent channel flows by surfactant additives. Surfactant additives were assumed to be uniformly distributed in the entire flow region by turbulent convection and diffusion etc., but it was assumed that the shear-induced structure (SIS) (network of rod-like micelles) could form either in the region next to the walls or in the center region of the channel, making the fluid viscoelastic. In other regions surfactant additives were assumed to be incapable of building a network structure, and to exist in form of molecules or micelles which do not affect the Newtonian properties of the fluid. With these assumptions, we studied the drag-reducing phenomenon with coexisting Newtonian and non-Newtonian fluids. From the study we identified the effectiveness of the network structures at different flow regions, and showed that the phenomenon of drag-reduction (DR) by surfactant additives is not only closely associated with the reduction of Reynolds shear stress but also related to the induced viscoelastic shear stress.


2016 ◽  
Vol 792 ◽  
pp. 98-133 ◽  
Author(s):  
Chenyang Weng ◽  
Susann Boij ◽  
Ardeshir Hanifi

A turbulent channel flow subjected to imposed harmonic oscillations is studied by direct numerical simulation (DNS) and theoretical models. Simulations have been performed for different pulsation frequencies. The time- and phase-averaged data have been used to analyse the flow. The onset of nonlinear effects during the production of the perturbation Reynolds stresses is discussed based on the DNS data, and new physical features observed in the DNS are reported. A linear model proposed earlier by the present authors for the coherent perturbation Reynolds shear stress is reviewed and discussed in depth. The model includes the non-equilibrium effects during the response of the Reynolds stress to the imposed periodic shear straining, where a phase lag exists between the stress and the strain. To validate the model, the perturbation velocity and Reynolds shear stress from the model are compared with the DNS data. The performance of the model is found to be good in the frequency range where quasi-static assumptions are invalid. The viscoelastic characteristics of the turbulent eddies implied by the model are supported by the DNS data. Attempts to improve the model are also made by incorporating the DNS data in the model.


1981 ◽  
Vol 110 ◽  
pp. 171-194 ◽  
Author(s):  
C. Chandrsuda ◽  
P. Bradshaw

Hot-wire measurements of second- and third-order mean products of velocity fluctuations have been made in the flow behind a backward-facing step with a thin, laminar boundary layer at the top of the step. Measurements extend to a distance of about 12 step heights downstream of the step, and include parts of the recirculating-flow region: approximate limits of validity of hot-wire results are given. The Reynolds number based on step height is about 105, the mixing layer being fully turbulent (fully three-dimensional eddies) well before reattachment, and fairly close to self-preservation in contrast to the results of some previous workers. Rapid changes in turbulence quantities occur in the reattachment region: Reynolds shear stress and triple products decrease spectacularly, mainly because of the confinement of the large eddies by the solid surface. The terms in the turbulent energy and shear stress balances also change rapidly but are still far from the self-preserving boundary-layer state even at the end of the measurement region.


Author(s):  
N. Ahmad ◽  
R. N. Parthasarathy

Particle Image Velocimetry (PIV) measurements were made in a fully-developed turbulent channel flow. The channel test section was 1 ft wide and 1 inch in height and was constructed out of plexiglass. One wall of the test section was made removable. Four walls were used: a plexiglass smooth wall, and three hydrophobic walls: (i) a lotus paint coated plexiglass wall, (ii) a treated aluminum sheet attached to the plexiglass wall and (iii) a treated rough surface attached to the plexiglass wall. The bulk velocity was held constant to yield a Reynolds number (based on the channel half-height) of 5,500. Several images were averaged to obtain mean velocity and Reynolds shear stress and turbulence kinetic energy measurements. It was found that the mean velocities in the near-wall region were higher for the lotus-paint coated surface flow and the treated rough surface flow than the flows with the other two surfaces. The friction velocity estimated from the Reynolds shear stress measurements was significantly lower for these two flows as well. The reduction in the wall shear stress in these flows is attributed to the finite slip that occurs at the hydrophobic surfaces.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yu Han ◽  
Shu-Qing Yang ◽  
Muttucumaru Sivakumar ◽  
Liu-Chao Qiu ◽  
Jian Chen

Hydraulic engineers often divide a flow region into subregions to simplify calculations. However, the implementation of flow divisibility remains an open issue and has not yet been implemented as a fully developed mathematical tool for modeling complex channel flows independently of experimental verification. This paper addresses whether a three-dimensional flow is physically divisible, meaning that division lines with zero Reynolds shear stress exist. An intensive laboratory investigation was conducted to carefully measure the time-averaged velocity in a rectangular open channel flow using a laser Doppler anemometry system. Two innovative methods are employed to determine the locations of division lines based on the measured velocity profile. The results clearly reveal that lines with zero total shear stress are discernible, indicating that the flow is physically divisible. Moreover, the experimental data were employed to test previously proposed methods of calculating division lines, and the results show that Yang and Lim’s method is the most reasonable predictor.


2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Abu Seena ◽  
A. Bushra ◽  
Noor Afzal

The heat and fluid flow in a fully developed turbulent channel flow have been investigated. The closure model of Reynolds shear stress and Reynolds heat flux as a function of a series of logarithmic functions in the mesolayer variable have been adopted. The interaction between inner and outer layers in the mesolayer (intermediate layer) arising from the balance of viscous effect, pressure gradient and Reynolds shear stress (containing the maxima of Reynolds shear stress) was first proposed by Afzal (1982, “Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer,” Arch. Appl. Mech., 53, 355–377). The unknown constants in the closure models for Reynolds shear stress and Reynolds heat flux have been estimated from the prescribed boundary conditions near the axis and surface of channel. The predictions are compared with the DNS data Iwamoto et al. and Abe et al. for Reynolds shear stress and velocity profile and Abe et al. data of Reynolds heat flux and temperature profile. The limitations of the closure models are presented.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
C. T. DeGroot ◽  
C. Wang ◽  
J. M. Floryan

Drag reduction in turbulent channel flows has significant practical relevance for energy savings. Various methods have been proposed to reduce turbulent skin friction, including microscale surface modifications such as riblets or superhydrophobic surfaces. More recently, macroscale surface modifications in the form of longitudinal grooves have been shown to reduce drag in laminar channel flows. The purpose of this study is to show that these grooves also reduce drag in turbulent channel flows and to quantify the drag reduction as a function of the groove parameters. Results are obtained using computational fluid dynamics (CFD) simulations with turbulence modeled by the k–ω shear-stress transport (SST) model, which is first validated with direct numerical simulations (DNS). Based on the CFD results, a reduced geometry model is proposed which shows that the approximate drag reduction can be quantified by evaluating the drag reduction of the geometry given by the first Fourier mode of an arbitrary groove geometry. Results are presented to show the drag reducing potential of grooves as a function of Reynolds number as well as groove wave number, amplitude, and shape. The mechanism of drag reduction is discussed, which is found to be due to a rearrangement of the bulk fluid motion into high-velocity streamtubes in the widest portion of the channel opening, resulting in a change in the wall shear stress profile.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 994
Author(s):  
Reza Shahmohammadi ◽  
Hossein Afzalimehr ◽  
Jueyi Sui

In this study, the incipient motion of four groups of sand, ranging from medium to very coarse particles, was experimentally examined using an acoustic Doppler velocimeter (ADV) in different water depths under the hydraulically transitional flow condition. The transport criterion of the Kramer visual observation method was used to determine threshold conditions. Some equations for calculating threshold average and near-bed velocities were derived. Results showed that the threshold velocity was directly proportional to both sediment particle size and water depth. The vertical distributions of the Reynolds shear stress showed an increase from the bed to about 0.1 of the water’s depth, after performing a damping area, then a decrease toward the water surface. By extending the linear portion of the Reynolds shear stress in the upper zone of the damping area to the bed, the critical shear stress, particle shear Reynolds number, and critical Shields parameter were calculated. Results showed that the critical Shields parameter was located under the Shields curve, showing no sediment motion. This indicates that the incipient motion of sediment particles occurred with smaller bed shear stress than that estimated using the Shields diagram in the hydraulically transitional flow region. The reason could be related to differences between the features of the present experiment and those of the experiments used in the development of the Shields diagram, including the approaches to determine and define threshold conditions, the accuracy of experimental tools to estimate critical shear stress, and sediment particle characteristics. Therefore, the change in the specifications of experiments from those on which the Shields diagram has been based led to the deviation between the estimation using the Shields diagram and that of real threshold conditions, at least in the hydraulically transitional flow region with sand particles.


Sign in / Sign up

Export Citation Format

Share Document