Sustainable Vacuum-Infused Thermoplastic Composites for MW-Size Wind Turbine Blades—Preliminary Design and Manufacturing Issues

2005 ◽  
Vol 127 (4) ◽  
pp. 570-580 ◽  
Author(s):  
K. van Rijswijk ◽  
S. Joncas ◽  
H. E. N. Bersee ◽  
O. K. Bergsma ◽  
A. Beukers

This paper addresses the feasibility of using innovative vacuum infused anionic polyamide-6 (PA-6) thermoplastic composites for MW-size wind turbine blades structures. To compare the performance of this fully recyclable material against commonly used less sustainable thermoset blade materials in a baseline structural MW-size blade configuration (box-spar/skins), four different blade composite material options were investigated: Glass/epoxy, carbon/epoxy, glass/PA-6, and carbon/PA-6. Blade characteristics such as weight, costs, and natural frequencies were compared for rotor blades ranging between 32.5 and 75m in length, designed according to both stress and tip deflection criteria. Results showed that the PA-6 blades have similar weights and natural frequencies when compared to their epoxy counterpart. For glass fiber blades, a 10% reduction in material cost can be expected when using PA-6 rather than epoxy while carbon fiber blades costs were found to be similar. Considering manufacturing, processing temperatures of PA-6 are significantly higher than for epoxy systems; however, the associated cost increase is expected to be compensated for by a reduction in infusion and curing time.

2021 ◽  
Vol 11 (19) ◽  
pp. 9271
Author(s):  
Heiko Engemann ◽  
Patrick Cönen ◽  
Harshal Dawar ◽  
Shengzhi Du ◽  
Stephan Kallweit

Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human–robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.


Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 25 ◽  
Author(s):  
Michael Parker ◽  
Douglas Bohl

The placement of a cylindrical body in a flow alters the velocity and pressure fields resulting in a local increase in the flow speed near the body. This interaction is of interest as wind turbine rotor blades could be placed in the area of increased wind speed to enhance energy harvesting. In this work the aerodynamic performance of two short aspect ratio (AR = 0.93) cylindrical bodies was evaluated for potential use in “accelerated wind” applications. The first cylinder was smooth with a constant diameter. The diameter of the second cylinder varied periodically along the span forming channels, or corrugations, where wind turbine blades could be placed. Experiments were performed for Reynolds numbers ranging from 1 × 105 to 9 × 105. Pressure distributions showed that the smooth cylinder had lower minimum pressure coefficients and delayed separation compared to the corrugated cylinder. Velocity profiles showed that the corrugated cylinder had lower peak speeds, a less uniform profile, and lower kinetic energy flux when compared to the smooth cylinder. It was concluded that the smooth cylinder had significantly better potential performance in accelerated wind applications than the corrugated cylinder.


Author(s):  
Katerin Ramirez-Tejeda ◽  
David A. Turcotte ◽  
Sarah Pike

Finding ways to manage the waste from the expected high number of wind turbine blades in need of disposal is crucial to harvest wind energy in a truly sustainable manner. Landfilling is the most cost-effective disposal method in the United States, but it imposes significant environmental impacts. Thermal, mechanical, and chemical processes allow for some energy and/or material recovery, but they also carry potential negative externalities. This article explores the main economic and environmental issues with various wind turbine blade disposal methods. We argue for the necessity of policy intervention that encourages industry to develop better technologies to make wind turbine blade disposal sustainable, both environmentally and economically. We present some of the technological initiatives being researched, such as the use of bio-derived resins and thermoplastic composites in the manufacturing process of the blades.


2019 ◽  
Vol 31 (2) ◽  
pp. 115-126
Author(s):  
Balázs Gáti ◽  
Tamás Gausz

Rotor blades of an autorotating helicopter or a gyrocopter work very similar to the rotor blades of a wind turbine in skew wind. In this publication we present the result of multiple analysis of a rotor blade of a rotary-wing airplane, but the analyses were performed with a software package developed for investigation of wind turbine blades. The results of several analyses seem to be valid for rotary-wing airplanes in some special, but very important cases, and can be useful for more detailed investigation. It was stated, that the fact leads to uninterpretable numerical solutions, that the angle between the undisturbed airflow and the Tip Path Plane is much lower in case of helicopters and gyrocopters than by wind turbines in most operational conditions .


2019 ◽  
Vol 208 ◽  
pp. 1-12 ◽  
Author(s):  
Camilo Herrera ◽  
Mariana Correa ◽  
Valentina Villada ◽  
Juan D. Vanegas ◽  
Juan G. García ◽  
...  

2014 ◽  
Vol 970 ◽  
pp. 67-73 ◽  
Author(s):  
Ali Nawaz Mengal ◽  
Saravanan Karuppanan ◽  
Azmi Abdul Wahab

Wind turbine blades are the major structural element and highest cost component in the wind power system. Modern wind turbine blade sizes are increasing, and the driving motivation behind this is to increase the efficiency and energy output per unit rotor area, and to reduce the cost per kilowatt hour. However due to the increase in size the material selection for wind turbine has become critical and complex. To achieve the desired materials to improve the design of wind turbine blades several factors such as high fatigue strength, less weight, less cost and potential of recycling must be focused. Basalt fiber is a relative newcomer to fiber reinforced polymers and structural composites. Basalt fiber with their excellent mechanical properties represents an interesting alternative composite material for modern wind turbine blades. Some manufacturers claim that basalt fiber has similar or better properties than S-2 glass fiber and its cheaper than carbon fiber. Basalt fiber together with carbon fiber are the most advanced and interesting area of hybrid technologies. This paper reviews extra ordinary properties of basalt fiber over other fiber reinforced composites and highlight how the basalt special properties together with carbon fiber will reduce the weight and cost of wind turbine blades while improving their performance. This paper also demonstrates why the basalt carbon hybrid composite material will be an ideal alternative for the wind turbine rotor blades.


2020 ◽  
Vol 12 (2) ◽  
pp. 023303
Author(s):  
Jin Xu ◽  
Lei Zhang ◽  
Shuang Li ◽  
Jianzhong Xu

2017 ◽  
Vol 42 (1) ◽  
pp. 66-84 ◽  
Author(s):  
Sudhakar Gantasala ◽  
Jean-Claude Luneno ◽  
Jan-Olov Aidanpää

This work demonstrates a technique to identify information about the ice mass accumulation on wind turbine blades using its natural frequencies, and these frequencies reduce differently depending on the spatial distribution of ice mass along the blade length. An explicit relation to the natural frequencies of a 1-kW wind turbine blade is defined in terms of the location and quantity of ice mass using experimental modal analyses. An artificial neural network model is trained with a data set (natural frequencies and ice masses) generated using that explicit relation. After training, this artificial neural network model is given an input of natural frequencies of the iced blade (identified from experimental modal analysis) corresponding to 18 test cases, and it identified ice masses’ location and quantity with a weighted average percentage error value of 17.53%. The proposed technique is also demonstrated on the NREL 5-MW wind turbine blade data.


Sign in / Sign up

Export Citation Format

Share Document