A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate

2006 ◽  
Vol 128 (4) ◽  
pp. 477-488 ◽  
Author(s):  
A. Chakraborty ◽  
S. Gopalakrishnan

A new spectral plate element (SPE) is developed to analyze wave propagation in anisotropic laminated composite media. The element is based on the first-order laminated plate theory, which takes shear deformation into consideration. The element is formulated using the recently developed methodology of spectral finite element formulation based on the solution of a polynomial eigenvalue problem. By virtue of its frequency-wave number domain formulation, single element is sufficient to model large structures, where conventional finite element method will incur heavy cost of computation. The variation of the wave numbers with frequency is shown, which illustrates the inhomogeneous nature of the wave. The element is used to demonstrate the nature of the wave propagating in laminated composite due to mechanical impact and the effect of shear deformation on the mechanical response is demonstrated. The element is also upgraded to an active spectral plate clement for modeling open and closed loop vibration control of plate structures. Further, delamination is introduced in the SPE and scattered wave is captured for both broadband and modulated pulse loading.

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Mira Mitra ◽  
S. Gopalakrishnan

In this paper, a 2D wavelet-based spectral finite element (WSFE) is developed for a anisotropic laminated composite plate to study wave propagation. Spectral element model captures the exact inertial distribution as the governing partial differential equations (PDEs) are solved exactly in the transformed frequency-wave-number domain. Thus, the method results in large computational savings compared to conventional finite element (FE) modeling, particularly for wave propagation analysis. In this approach, first, Daubechies scaling function approximation is used in both time and one spatial dimensions to reduce the coupled PDEs to a set of ordinary differential equations (ODEs). Similar to the conventional fast Fourier transform (FFT) based spectral finite element (FSFE), the frequency-dependent wave characteristics can also be extracted directly from the present formulation. However, most importantly, the use of localized basis functions in the present 2D WSFE method circumvents several limitations of the corresponding 2D FSFE technique. Here, the formulated element is used to study wave propagation in laminated composite plates with different ply orientations, both in time and frequency domains.


Author(s):  
Vishnu Prasad Venugopal ◽  
Gang Wang

Embedded smart actuators/sensors, such as piezoelectric types, have been used to conduct wave transmission and reception, pulse-echo, pitch-catch, and phased array functions in order to achieve in-situ nondestructive evaluation for different structures. By comparing to baseline signatures, the damage location, amount, and type can be determined. Typically, this methodology does not require analytical structural models and interrogation algorithm is carefully designed with little wave propagation knowledge of the structure. However, the wave excitation frequency, waveform, and other signal characteristics must be comprehensively considered to effectively conduct diagnosis of incipient forms of damage. Accurate prediction of high frequency wave response requires a prohibitively large number of conventional finite elements in the structural model. A new high fidelity approach is needed to capture high frequency wave propagations in a structure. In this paper, a spectral finite element method (SFEM) is proposed to characterize wave propagations in a beam structure under piezoelectric material (i.e., PZT) actuation/sensing. Mathematical models are developed to account for both Uni-morph and bi-morph configurations, in which PZT layers are modeled as either an actuator or a sensor. The Timoshenko beam theory is adopted to accommodate high frequency wave propagations, i.e., 20–200 KHz. The PZT layer is modeled as a Timoshenko beam as well. Corresponding displacement compatibility conditions are applied at interfaces. Finally, a set of fully coupled governing equations and associated boundary conditions are obtained when applying the Hamilton’s principle. These electro-mechanical coupled equations are solved in the frequency domain. Then, analytical solutions are used to formulate the spectral finite element model. Very few spectral finite elements are required to accurately capture the wave propagation in the beam because the shape functions are duplicated from exact solutions. Both symmetric and antisymmetric mode of lamb waves can be generated using bimorph or uni-morph actuation. Comprehensive simulations are conducted to determine the beam wave propagation responses. It is shown that the PZT sensor can pick up the reflected waves from beam boundaries and damages. Parametric studies are conducted as well to determine the optimal actuation frequency and sensor sensitivity. Such information helps us to fundamentally understand wave propagations in a beam structure under PZT actuation and sensing. Our SFEM predictions are validated by the results in the literature.


Author(s):  
Antonio Carminelli ◽  
Giuseppe Catania

This paper presents a finite element formulation for the dynamical analysis of general double curvature laminated composite shell components, commonly used in many engineering applications. The Equivalent Single Layer theory (ESL) was successfully used to predict the dynamical response of composite laminate plates and shells. It is well known that the classic shell theory may not be effective to predict the deformational behavior with sufficient accuracy when dealing with composite shells. The effect of transverse shear deformation should be taken into account. In this paper a first order shear deformation ESL laminated shell model, adopting B-spline functions as approximation functions, is proposed and discussed. The geometry of the shell is described by means of the tensor product of B-spline functions. The displacement field is described by means of tensor product of B-spline shape functions with a different order and number of degrees of freedom with respect to the same formulation used in geometry description, resulting in a non-isoparametric formulation. A solution refinement method, making it possible to increase the order of the displacement shape functions without using the well known B-spline “degree elevation” algorithm, is also proposed. The locking effect was reduced by employing a low-order integration technique. To test the performance of the approach, the static solution of a single curvature shell and the eigensolutions of composite plates were obtained by numerical simulation and are then compared with known solutions. Discussion follows.


SIMULATION ◽  
2017 ◽  
Vol 93 (5) ◽  
pp. 397-408 ◽  
Author(s):  
Ashkan Khalili ◽  
Ratneshwar Jha ◽  
Dulip Samaratunga

A Wavelet Spectral Finite Element (WSFE)-based user-defined element (UEL) is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in one-dimensional composite structures. The WSFE method is based on the first-order shear deformation theory to yield accurate and computationally efficient results for high-frequency wave motion. The frequency domain formulation of the WSFE leads to complex-valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Four numerical examples are presented in this article, namely an undamaged beam, a beam with impact damage, a beam with a delamination, and a truss structure. A multi-point constraint subroutine, defining the connectivity between nodes, is developed for modeling the delamination in a beam. Wave motions predicted by the UEL correlate very well with Abaqus simulations. The developed UEL largely retains the computational efficiency of the WSFE method and extends its ability to model complex features.


Sign in / Sign up

Export Citation Format

Share Document