Characteristics of Beam-Based Flexure Modules

2006 ◽  
Vol 129 (6) ◽  
pp. 625-639 ◽  
Author(s):  
Shorya Awtar ◽  
Alexander H. Slocum ◽  
Edip Sevincer

The beam flexure is an important constraint element in flexure mechanism design. Nonlinearities arising from the force equilibrium conditions in a beam significantly affect its properties as a constraint element. Consequently, beam-based flexure mechanisms suffer from performance tradeoffs in terms of motion range, accuracy and stiffness, while benefiting from elastic averaging. This paper presents simple yet accurate approximations that capture the effects of load-stiffening and elastokinematic nonlinearities in beams. A general analytical framework is developed that enables a designer to parametrically predict the performance characteristics such as mobility, over-constraint, stiffness variation, and error motions, of beam-based flexure mechanisms without resorting to tedious numerical or computational methods. To illustrate their effectiveness, these approximations and analysis approach are used in deriving the force–displacement relationships of several important beam-based flexure constraint modules, and the results are validated using finite element analysis. Effects of variations in shape and geometry are also analytically quantified.

Author(s):  
Shorya Awtar ◽  
Alexander H. Slocum

The simple beam acts as a constraint element when used in flexure mechanisms. Non-linearities arising from the force equilibrium conditions in a beam significantly affect its properties as a constraint element. Consequently, beam-based flexure mechanisms typically suffer from performance tradeoffs in terms of motion range, accuracy and stiffness. This paper presents simple yet accurate approximations that capture this non-linearity and allow for the closed-form analysis of flexure mechanisms of moderate complexity. These general analytical tools enable a designer to parametrically predict key performance parameters of a conceived mechanism such as mobility, over-constraint, stiffness variation, and error motions, without resorting to tedious numerical or computational methods. To illustrate their effectiveness, these approximations are used in deriving the closed-form force-displacement characteristics of several important beam-based flexure modules, and the results are validated using Finite Element Analysis. Variations in the beam shape and flexure module geometry are also considered analytically.


Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

We present the constraint-based design of a novel parallel kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz). The geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via non-linear finite element analysis. A proof-of-concept prototype of the flexure mechanism is fabricated to validate its large range and decoupled motion capability. The analyses as well as the hardware demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the non-linear FEA predicts a cross-axis error of less than 3%, parasitic rotations less than 2 mrad, less than 4% lost motion, actuator isolation less than 1.5%, and no perceptible motion direction stiffness variation. Ongoing work includes non-linear closed-form analysis and experimental measurement of these error motion and stiffness characteristics.


2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

A novel parallel-kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz) is presented. Geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via nonlinear finite elements analysis (FEA). A proof-of-concept prototype is fabricated to validate the predicted large range and decoupled motion capabilities. The analysis and the hardware prototype demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the nonlinear FEA predicts cross-axis errors of less than 7.8%, parasitic rotations less than 10.8 mrad, less than 14.4% lost motion, actuator isolation better than 1.5%, and no perceptible motion direction stiffness variation.


Author(s):  
Guangbo Hao

XY compliant parallel manipulators (aka XY parallel flexure motion stages) have been used as diverse applications such as atomic force microscope scanners due to their proved advantages such as eliminated backlash, reduced friction, reduced number of parts and monolithic configuration. This paper presents an innovative stiffness centre based approach to design a decoupled 2-legged XY compliant parallel manipulator in order to better minimise the inherent parasitic rotation and have a more compact configuration. This innovative design approach makes all of the stiffness centres, associated with the passive prismatic (P) modules, overlap at a point that all of the applied input forces can go through. A monolithic compact and decoupled XY compliant parallel manipulator with minimised parasitic rotation is then proposed using the proposed design approach based on a 2-PP kinematically decoupled translational parallel manipulator. Its load–displacement and motion range equations are derived, and geometrical parameters are determined for a specified motion range. Finite element analysis comparisons are also implemented to verify the analytical models with analysis of the performance characteristics including primary stiffness, cross-axis coupling, parasitic rotation, input and output motion difference and actuator nonisolation effect. Compared with the existing XY compliant parallel manipulators obtained using 4-legged mirror-symmetric constraint arrangement, the proposed XY compliant parallel manipulators based on stiffness centre approach mainly benefits from fewer legs resulting in reduced size, simpler modelling as well as smaller lost motion. Compared with existing 2-legged designs with the conventional arrangement, the present design has smaller parasitic rotation, which has been proved from the finite element analysis results.


Author(s):  
Patricia Llana ◽  
Richard Stringfellow ◽  
Ronald Mayville

The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition of the importance of override prevention in train-to-train collisions in which one of the vehicles is a locomotive, and in light of the success of crash energy management technologies in cab car-led passenger trains, the Volpe Center seeks to evaluate the effectiveness of components that could be integrated into the end structure of a locomotive that are specifically designed to mitigate the effects of a collision and, in particular, to prevent override of one of the lead vehicles onto the other. A research program has been conducted to develop, fabricate and test two crashworthy components for the forward end of a locomotive: (1) a deformable anti-climber, and (2) a push-back coupler. Detailed designs for these components were developed, and the performance of each design was evaluated through large deformation dynamic finite element analysis (FEA). Designs for two test articles that could be used to verify the performance of the component designs in full-scale tests were also developed. The two test articles were fabricated and dynamically tested by means of rail car impact in order to verify certain performance characteristics of the two components relative to specific requirements. The tests were successful in demonstrating the effectiveness of the two design concepts. Test results were consistent with finite element model predictions in terms of energy absorption capability, force-displacement behavior and modes of deformation.


Author(s):  
Anil Misra ◽  
Rizacan Sarikaya

In this study, deformation and failure mechanisms of mineralized tissue (bone) were investigated both experimentally and computationally by performing diametral compression tests on millimetric disk specimens and conducting finite element analysis in which a granular micromechanics-based nonlinear user-defined material model is implemented. The force–displacement relationship obtained in the simulation agreed well with the experimental results. The simulation was also able to capture location of the failure initiation observed in the experiment, which is inside out from the hole along the loading axis. Furthermore, propagation of micro-sized cracks into failure was observed both in the experiment using simultaneous slow-motion microscopy imaging and in the simulation analyzing the local distortion and local volume change within the specimen. The anisotropy evolution was found to be significant around the hole along the loading axis by evaluating the anisotropy index computed using finite element results. In conclusion, this work revealed that the prediction capability of granular micromechanics-based user-defined nonlinear material model (UMAT) is promising considering the match between the results and observations from the physical experiment and finite element analysis such as force–displacement relationship and failure initiation/pattern. This work has also shown that the tensile damage and failure of mineralized tissues can be characterized using diametral compression (split tension) test.


Author(s):  
Muhammad Ali ◽  
Khairul Alam ◽  
Eboreime Ohioma

Composite materials have emerged as promising materials in applications where low weight and high strengths are desired. Aerospace industry has been using composite materials for past several decades exploiting their characteristics of high strength to weight ratio over conventional homogenous materials. To provide a wider selection of materials for design optimization, and to develop lighter and stronger vehicles, automobile industries have been exploring the use of composites for a variety of components, assemblies, and structures. Composite materials offer an attractive alternate to traditional metals as designers have greater flexibility to optimize material and structural shapes according to functional requirements. However, any automotive structure or part constructed from composite materials must meet or exceed crashworthiness standards such as Federal Motor Vehicle Safety Standard (FMVSS) 208. Therefore, for a composite structure designed to support the integrity of the automotive structure and provide impact protection, it is imperative to understand the energy absorption characteristics of the candidate composite structures. In the present study, a detailed finite element analysis is presented to evaluate the energy absorbing characteristics of a carbon fiber reinforced polymer composite lower rail, a critical impact mitigation component in automotive chassis. For purposes of comparison, the analysis is repeated with equivalent aluminum and steel lower rails. The study was conducted using ABAQUS CZone module, finite element analysis software. The rail had a cross-sectional dimension of 62 mm (for each side), length of 457.2 mm, and a wall thickness of 3.016 mm. These values were extracted from automobile chassis manufacturer’s catalog. The rail was impacted by a rigid plate of mass 1 tonne (to mimic a vehicle of 1000 Kg gross weight) with an impact velocity of 35 mph (15646.4 mm/s), which is 5 mph over the FMVSS 208 standard, along its axis. The simulation results show that the composite rail crushes in a continuous manner under impact load (in contrast to a folding collapse deformation mode in aluminum and steel rails) which generates force-displacement curve with invariable crushing reactive force for the most part of the crushing stroke. The energy curves obtained from reactive force-displacement graphs show that the composite rail absorbs 240% and 231% more energy per unit mass as compared to aluminum and steel rails. This shows a significant performance enhancement over equivalent traditional metal (aluminum and steel) structures and suggests that composite materials in conjunction with cellular materials/configurations have a tremendous potential to improve crashworthiness of automobiles while offering opportunities of substantial weight reductions.


Author(s):  
Shorya Awtar ◽  
Alexander H. Slocum

This paper presents parallel kinematic XY mechanism designs that are based on a systematic constraint pattern. The constraint pattern, realized by means of double parallelogram flexure modules, is such that it allows large ranges of motion without over-constraining the mechanism or generating significant error motions. Nonlinear force-displacement characteristics of the double parallelogram flexure are used in analytically predicting the performance measures of the proposed XY mechanisms. Comparisons between closed-form linear and nonlinear analyses are presented to highlight the inadequacy of the former. Fundamental design tradeoffs in flexure mechanism performance are discussed qualitatively and quantitatively. It is shown that geometric symmetry in the constraint arrangement relaxes some of the design tradeoffs, resulting in improved performance. The nonlinear analytical predictions are validated by means of Finite Element Analysis and experimental measurements.


Author(s):  
X. Jia ◽  
Y. Tian ◽  
D. Zhang ◽  
J. Liu

In order to investigate the influence of the stiffness of the compliant prismatic pair, a planar four-bar parallelogram, in a fully compliant parallel mechanism, the stiffness model of the passive compliant prismatic pair in a compliant parallel positioning stage is established using the compliant matrix method and matrix transformation. The influences of the constraints and the compliance of the connecting rods on the flexibility characteristics of the prismatic pair are studied based on the developed model. The relative geometric parameters are changed to show the rules of the stiffness variation and to obtain the demands for simplification in the stiffness modeling of the prismatic pair. Furthermore, the finite element analysis has been conducted to validate the analytical model.


Sign in / Sign up

Export Citation Format

Share Document