A Kinetic Friction Model for Viscoelastic Contact of Nominally Flat Rough Surfaces

2007 ◽  
Vol 129 (3) ◽  
pp. 684-688 ◽  
Author(s):  
K. Farhang ◽  
A. Lim

Approximate closed-form equations are derived for normal and tangential contact forces of rough surfaces in dry friction. Using an extension of the Greenwood and Tripp (1970, Proc, Inst. Mech. Eng., 185, pp. 625–633) model, in which the derivations permit asperity shoulder-to-shoulder contact and viscoelastic asperity behavior, mathematical formulae are derived for normal and tangential components of the contact force that depend not only on the proximity of the two surfaces but also the rate of approach and relative sliding. A statistical approach is forwarded in which dependence of the asperity tangential contact force on relative tangential velocity of two asperities can be cast as corrective factors in the mathematical description of tangential force. In this regard two corrective coefficients are derived: force directionality corrective coefficient and force–velocity directionality corrective coefficient. The results show that for a moderate to high load ranges the contact force can be analytically described to within 20% accuracy of that from a numerical integration of the contact equations, well below the uncertainties due to surface profile measurement.

Author(s):  
K. Farhang ◽  
A. Lim

Approximate closed-form equations are derived for normal and tangential contact forces of rough surfaces in dry friction. Using an extension of the Greenwood and Tripp model, in which the derivations permit asperity shoulder-to-shoulder contact and viscoelastic asperity behavior. Mathematical formulae are derived for normal and tangential components of the contact force that depend not only on the proximity of the two surfaces but also the rate of approach and relative sliding. A statistical approach is forwarded in which dependence of the asperity tangential contact force on relative tangential velocity of two asperities can be cast as a corrective factor in the mathematical description of tangential force. In this regard two corrective coefficients are derived: force directionality corrective coefficient and force-velocity directionality corrective coefficient. The results show that for a moderate to high load ranges the contact force can be analytically described to within 20 percent accuracy, well below the uncertainties due to surface profile measurement.


Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

Approximate closed form equations are found for normal and tangential contact forces of rough surfaces in dry friction. Using a viscoelastic asperity behavior, mathematical formulae are derived for normal and tangential components of the contact force that depend not only on the separation of the two surfaces but also the rate of approach and relative sliding. The tangential force over a half-plane, corresponding to the moving direction, is found accounting for the directionality of the tangential component of asperity forces. A statistical approach is forwarded in which dependence of the asperity normal and tangential contact force on relative tangential velocity of two asperities can presented as corrective factors in the mathematical description of normal and tangential force components. These are force directionality corrective coefficient and force-velocity directionality corrective coefficient. Two sets of approximate equations are found for each of the normal and half-plane tangential force components. The simplest forms of the approximate equations achieve accuracy to within five (5) percent error, while other forms yield approximation error within 0.2 percent.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

It is reasonable to expect that, when two nominally flat rough surfaces are brought into contact by an applied resultant force, they must support, in addition to the compressive load, an induced moment. The existence of a net applied moment would imply noneven distribution of contact force so that there are more asperities in contact over one region of the nominal area. In this paper, we consider the contact between two rectangular rough surfaces that provide normal and tangential contact force as well as contact moment to counteract the net moment imposed by the applied forces. The surfaces are permitted to develop slight angular misalignment, and thereby contact moment is derived. Through this scheme, it is possible to also define elastic contribution to friction since the half-plane tangential contact force on one side of an asperity is no longer balanced by the half-plane tangential force component on the opposite side. The elastic friction force, however, is shown to be of a much smaller order than the contact normal force. Approximate closed-form equations are found for contact force and moment for the contact of rough surfaces.


Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

Mathematical formulae are derived for normal and tangential components of the contact force that depend not only on the proximity of the two surfaces but also the rate of approach and relative sliding. The development of the contact model is based on the asperity shoulder-shoulder contact leading to slanted asperity contact force. Thus an asperity force contains both normal and tangential components. Three dimensional consideration of asperity contact force yields directionally dependence of both the normal and tangential force components. A previously reported statistical approach is employed in which the dependence of the asperity normal and tangential contact force components on relative tangential velocity of two asperities are cast as corrective factors in the mathematical description of normal and tangential force components. The two corrective coefficients are the force directionality corrective coefficient and the force-velocity directionality corrective coefficient. Approximate equations are found for each of the normal and half-plane tangential force components that achieve accuracy within five (5) percent error.


Author(s):  
A. Sepehri ◽  
K. Farhang

It is reasonable to expect that when two nominally flat rough surfaces are brought into contact by an applied resultant force, they must support, in addition to the compressive load, an induced moment. The existence of a net applied moment would imply non-even distribution of contact force so that there are more asperities in contact over one region of the nominal area. In this paper we consider the contact between two rectangular rough surfaces that provide normal and tangential contact force as well as contact moment to counteract the net moment imposed by the applied forces. The surfaces are permitted to develop slight angular misalignment and through this contact moment is derived. Through this scheme it is possible to also define elastic contribution to friction since the half-plane tangential contact force on one side of an asperity is no longer balanced by the half-plane tangential force component on the opposite side. The elastic friction force however is shown to be of a much smaller order than the contact normal force.


Author(s):  
A. Sepehri ◽  
K. Farhang

It is reasonable to expect that when two nominally flat rough surfaces are brought into contact by an applied resultant force, they must support, in addition to the compressive load, an induced moment. The existence of a net applied moment would imply non-even distribution of contact force so that there are more asperities in contact over one region of the nominal area. In this paper we consider the contact between two rectangular rough surfaces that provide normal and tangential contact force as well as contact moment to counteract the net moment imposed by the applied forces. The surfaces are permitted to develop slight angular misalignment and through this contact moment is derived. Through this scheme it is possible to also define elastic contribution to friction since the half-plane tangential contact force on one side of an asperity is no longer balanced by the half-plane tangential force component on the opposite side. The elastic friction force however is shown to be of a much smaller order than the contact normal force.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

In this paper we consider the contact between two rectangular rough surfaces that provide normal and tangential contact forces, as well as contact moment, to counteract the net moment imposed by the applied forces. The surfaces are permitted to develop a slight angular misalignment, and thereby contact moment is derived. Through this scheme it is possible to also define elastic contribution to friction, since the half-plane tangential contact force on one side of an asperity is no longer balanced by the half-plane tangential force component on the opposite side. The elastic friction force, however, is shown to be of a much smaller order than the contact normal force.


Author(s):  
A. Sepehri ◽  
K. Farhang

In this paper we consider the contact between two rectangular rough surfaces that provide normal and tangential contact force as well as contact moment to counteract the net moment imposed by the applied forces. The surfaces are permitted to develop slight angular misalignment and thereby contact moment is derived. Through this scheme it is possible to also define elastic contribution to friction since the half-plane tangential contact force on one side of an asperity is no longer balanced by the half-plane tangential force component on the opposite side. The elastic friction force however is shown to be of a much smaller order than the contact normal force. Approximate closed form equations are found for contact force and moment as functions of separation, asperity radius of curvature sum, mean plane slope and nominal contact dimension. The approximate equations are shown to give error within seven percent.


2009 ◽  
Vol 76 (3) ◽  
Author(s):  
Philip P. Garland ◽  
Robert J. Rogers

Low and high speed impacts frequently occur in many mechanical processes. Although widely studied, rarely are normal and tangential force time-waveforms measured, as generally these are very difficult measurements to do accurately. This paper presents, for the first time, a comprehensive set of experimentally obtained contact force waveforms during oblique elastic impact for a range of initial velocities and incidence angles. The experimental apparatus employed in this study was a simple pendulum consisting of a spherical steel striker suspended from a steel wire. The contact force time-waveforms were collected using a tri-axial piezoelectric force transducer sandwiched between a spherical target cap and a large block. The measured contact forces showed that loading was essentially limited to the normal and tangential directions in the horizontal plane. Analysis of the maximum normal and tangential forces for the near glancing angles of incidence indicated a friction coefficient that varies linearly with initial tangential velocity. The essential features of tangential force reversal during impact predicted by previous continuum models are confirmed by the experimental force results.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950068
Author(s):  
Xunnan Liu ◽  
Lanhao Zhao ◽  
Jia Mao ◽  
Tongchun Li

In the past, contact model in the combined finite-discrete element method (FDEM) does not include the influence of the tangential contact interaction, and the deficient model associated with the contact force can seriously degrade the computing accuracy. In order to overcome this defect, an improved FDEM is developed in this work. The potential contact mechanism is implemented to calculate the normal contact force; meanwhile, the force-displacement law by coupling the classical Mohr–Coulomb type frictional algorithm and the rotation transformation algorithm is applied for the accurate computation of the tangential contact force. Consequently, a holonomic system of the calculation algorithm for the contact interaction is proposed, accounting for the influence of the tangential contact force. The performance of the approach is validated with well-known benchmarks including a frictional numerical test, the dynamic response of the block under the seismic excitation, a sliding/toppling test of a joint rock slope, a numerical simulation for joints structure affecting a sliding rock mass and the 2008 Donghekou Landslide trigged by the Wenchuan Earthquake. The results are compared against the experimental data and analytical solutions. Excellent agreements between the computational result and existing measurements show that the proposed approach has an outstanding ability to describe the complex mechanical properties among the separate entities.


Sign in / Sign up

Export Citation Format

Share Document