On the Stability of Gyroscopic Systems

1998 ◽  
Vol 65 (2) ◽  
pp. 519-522 ◽  
Author(s):  
P. Lancaster ◽  
P. Zizler

Gyroscopic systems considered here have the form Ay¨ + Gy˙ + Ky = 0 where A, G, K are real n × n matrices with A > O, GT = −G, KT = K, and the stiffness matrix K has some negative eigenvalues; i.e., the equilibrium position is unstable (when G = 0). A new necessary condition for stability is established. It is also shown that gyroscopic systems with K < 0 and G singular are always unstable for G sufficiently large.

2007 ◽  
Vol 280-283 ◽  
pp. 185-188 ◽  
Author(s):  
Jing Zhou ◽  
Wen Chen ◽  
Hua Jun Sun ◽  
Qing Xu

The electron structure of Pb(Zr1/2Ti1/2)O3(PZT), Pb(Zn1/3Nb2/3)O3(PZN) and Pb(Mn1/3Sb2/3)O3 (PMS) systems was calculated by the SCF-DV-Xα calculation method. The effects of ABO3-type perovskite and pyrochlore ceramic electron structure on their piezoelectricity were also studied. The results showed that the ferroelectric phase is more stable than paraelectric phase and the necessary condition of stable existing ferroelectric is the mixed orbit of O2p orbit and the out layer d orbit of B-site atom. The stability of ferroelectricity can be indicated by the strength of mixed orbit. When (Zr, Ti) was substituted by Mn1/3Sb2/3, Zn1/3Nb2/3, if it could form tetragonal perovskite structure, the total system energy would reduce and the mixed orbit will enhance, which improves the ferroelectricity of PZT system. However, if it forms a cubic pyrochlore structure, the ferroelectricity would lose because the covalent bond strength of B-O (axial direction) and B-O (vertical axial direction) is different obviously, which lead to the system structure become unstable.


2020 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Mark Schlutow ◽  
Georg S. Voelker

Abstract We investigate strongly nonlinear stationary gravity waves which experience refraction due to a thin vertical shear layer of horizontal background wind. The velocity amplitude of the waves is of the same order of magnitude as the background flow and hence the self-induced mean flow alters the modulation properties to leading order. In this theoretical study, we show that the stability of such a refracted wave depends on the classical modulation stability criterion for each individual layer, above and below the shearing. Additionally, the stability is conditioned by novel instability criteria providing bounds on the mean-flow horizontal wind and the amplitude of the wave. A necessary condition for instability is that the mean-flow horizontal wind in the upper layer is stronger than the wind in the lower layer.


2013 ◽  
Vol 278-280 ◽  
pp. 1687-1691
Author(s):  
Tong Qiang Jiang ◽  
Jia Wei He ◽  
Yan Ping Gao

The consensus problems of two situations for singular multi-agent systems with fixed topology are discussed: directed graph without spanning tree and the disconnected undirected graph. A sufficient and necessary condition is obtained by applying the stability theory and the system is reachable asymptotically. But for normal systems, this can’t occur in upper two situations. Finally a simulation example is provided to verify the effectiveness of our theoretical result.


2013 ◽  
Vol 651 ◽  
pp. 710-716 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effects of spindles vibrational behavior on the stability lobes and the Chatter behavior of machine tools have been established. The service life has been observed to reducethe system natural frequencies. An analytical model of a multi-segment spinning spindle, based on the Dynamic Stiffness Matrix (DSM) formulation, exact within the limits of the Euler-Bernoulli beam bending theory, is developed. The system exhibits coupled Bending-Bending (B-B) vibration and its natural frequencies are found to decrease with increasing spinning speed. The bearings were included in the model usingboth rigid, simply supported, frictionless pins and flexible linear spring elements. The linear spring element stiffness is then calibrated so that the fundamental frequency of the system matches the nominal value.


2008 ◽  
Vol 602 ◽  
pp. 241-266 ◽  
Author(s):  
LARRY J. PRATT ◽  
KARL R. HELFRICH ◽  
DAVID LEEN

The stability of a hydraulically driven sill flow in a rotating channel with smoothly varying cross-section is considered. The smooth topography forces the thickness of the moving layer to vanish at its two edges. The basic flow is assumed to have zero potential vorticity, as is the case in elementary models of the hydraulic behaviour of deep ocean straits. Such flows are found to always satisfy Ripa's necessary condition for instability. Direct calculation of the linear growth rates and numerical simulation of finite-amplitude behaviour suggests that the flows are, in fact, always unstable. The growth rates and nonlinear evolution depend largely on the dimensionless channel curvature κ=2αg′/f2, where 2α is the dimensional curvature, g′ is the reduced gravity, and f is the Coriolis parameter. Very small positive (or negative) values of κ correspond to dynamically wide channels and are associated with strong instability and the breakup of the basic flow into a train of eddies. For moderate or large values of κ, the instability widens the flow and increases its potential vorticity but does not destroy its character as a coherent stream. Ripa's condition for stability suggests a theory for the final width and potential vorticity that works moderately well. The observed and predicted growth in these quantities are minimal for κ≥1, suggesting that the zero-potential-vorticity approximation holds when the channel is narrower than a Rossby radius based on the initial maximum depth. The instability results from a resonant interaction between two waves trapped on opposite edges of the stream. Interactions can occur between two Kelvin-like frontal waves, between two inertia–gravity waves, or between one wave of each type. The growing disturbance has zero energy and extracts zero energy from the mean. At the same time, there is an overall conversion of kinetic energy to potential energy for κ>0, with the reverse occurring for κ<0. When it acts on a hydraulically controlled basic state, the instability tends to eliminate the band of counterflow that is predicted by hydraulic theory and that confounds hydraulic-based estimates of volume fluxes in the field. Eddy generation downstream of the controlling sill occurs if the downstream value of κ is sufficiently small.


1979 ◽  
Vol 46 (2) ◽  
pp. 423-426 ◽  
Author(s):  
I. Fawzy

Dynamic stability of a general nonconservative system of n degrees of freedom is investigated. A sufficient and necessary condition for the stability of such a system is developed. It represents a simplified criterion based on the famous Lyapunov’s theorem which is proved afresh using λ-matrix methods only. When this criterion is adopted, it reduces the number of equations in Lyapunov’s method to less than half. A systematic procedure is then suggested for the stability investigation and its use is illustrated through a numerical example at the end of the paper.


Author(s):  
Ge´rson B. Matter ◽  
Joel S. Sales ◽  
Sergio H. Sphaier

The paper deals with the dynamics of floating systems (FPSO units) moored in deep water in the presence of currents. The offloading operation is carried out in a tandem arrangement from the FPSO to a Shuttle ship of lesser capacity. According to the classical theory of dynamic systems, a study of the behavior of floating units is performed by determining the equilibrium position and then analyzing the stability around this position. The time domain analysis is also used to compare the results. This procedure is extended to the case of systems in a spread mooring configuration and with turret.


2016 ◽  
Vol 120 (1232) ◽  
pp. 1566-1577 ◽  
Author(s):  
S. He ◽  
D. Lin ◽  
J. Wang

ABSTRACTThis paper investigates the problem of coning motion stability of spinning missiles equipped with strapdown seekers. During model derivation, it is found that the scaling factor error between the strapdown seeker and the onboard gyro introduces an undesired parasitic loop in the guidance system and, therefore, results in stability issues. Through stability analysis, a sufficient and necessary condition for the stability of spinning missiles with strapdown seekers is proposed analytically. Theoretical and numerical results reveal that the scaling factor error, spinning rate and navigation ratio play important roles in stable regions of the guidance system. Consequently, autopilot gains must be checked carefully to satisfy the stability conditions.


Author(s):  
E. Meshkov

We discuss the results of experiments that illustrate some features of a turbulent mixing zone (TMZ) structure at a gas–liquid interface (Rayleigh–Taylor instability) and at a gas–gas interface accelerated by shock waves (Richtmyer–Meshkov instability). The important feature is the existence of a heavier substance concentration (density) jump at the interface between the heavy medium and the TMZ. It is found that the existence of this jump is a generic feature of any developed TMZ and is the necessary condition for its continuous development. In the case of a gas–liquid interface, the stable existence of this jump is connected with the stability of the cupola of gas bubbles penetrating into the liquid in a TMZ. The important feature of the development of interface instability accelerated by an unsteady shock is the decaying ability (up to full suppression) of the interface instability in the case when a decaying wave passes through the interface in the direction from light gas to heavy gas.


Sign in / Sign up

Export Citation Format

Share Document