Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Indranil Ghosh

Forced convection heat transfer in high porosity metal foam, either attached to an isothermal surface or confined between two isothermal plates, has been analyzed, assuming a repetitive simple cubic structure for the foam matrix. The model, in the microscopic level takes account of the forced convective heat transfer coupled with heat conduction through the foam fibers. Analytical expressions have been derived for the gas-solid temperature difference, total heat transfer through the foam, and efficiency of foam as an extended surface. The resulting expressions have strong resemblance with those of the conventional finned surface. The effect of porosity and foam density on the heat transfer in metallic foam has been established through parametric studies. Significant heat-transfer augmentation due to cross connections in metal struts has been noticed.

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Prakash H. Jadhav ◽  
N. Gnanasekaran ◽  
D. Arumuga Perumal

Abstract The intent of the current research work is to emphasize the computational modeling of forced convection heat dissipation in the presence of high porosity and thermal conductivity metallic foam in a horizontal pipe for different regimes of the fluid flow for a range of Reynolds number. A two-dimensional physical domain is considered in which Darcy extended Forchheimer (DEF) model is adopted in the aluminum metallic foam to predict the features of fluid flow and local thermal nonequilibrium (LTNE) model is employed for the analysis of heat transfer in a horizontal pipe for different flow regimes. The numerical results are initially matched with experimental and analytical results for the purpose of validation. The average Nusselt number for fully filled foam is found to be higher compared to other filling rate of metallic foams and the clear pipe at the cost of pressure drop. As an important finding, it has been observed that the laminar and transition flow gives higher heat transfer enhancement ratio and thermal performance factor compared to turbulent flow. This work resembles numerous industrial applications such as solar collectors, heat exchangers, electronic cooling, and microporous heat exchangers. The novelty of the work is the selection of suitable flow and thermal models in order to clearly assimilate the flow and heat transfer in metallic foam. The presence of aluminum metal foam is highlighted for the augmentation of heat dissipation in terms of PPI and porosity. The parametric study proposed in this work surrogates the complexity and cost involved in developing an expensive experimental setup.


Author(s):  
Ahmed S. Suleiman ◽  
Nihad Dukhan

Open-cell metal foam is a class of modern porous media that possesses high thermal conductivity, large accessible surface area per unit volume and high porosities (often greater than 90%). The high porosity means very low weight. The internal structure of the foam is web-like. Internal flow inside the foam is complex and includes flow reversal, destruction of boundary layers and vigorous mixing. All of these attributes make metal foam a very attractive heat transfer core for many applications. The rather complex and intrinsically random architecture of the foam is virtually impossible to capture exactly. In this paper, we present a unit cell geometrical model that was used to represent the foam structure for numerical analysis purposes. In particular, the unit cell is used to numerically study forced convection heat transfer between aluminum foam and air. The Navier-Stokes and the governing energy equation are solved directly and the temperature fields are obtained using COMSOL. The details of the modeling process are given in this paper. The results are encouraging and lend confidence to the modeling approach, which paves the way for other investigations of the foam, as well as optimization work based on the structure of the foam.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Yuping Duan ◽  
S. F. Hosseinizadeh ◽  
J. M. Khodadadi

The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For high Ra number cases, the hot fluid at the bottom of the sphere is also observed to rise along the symmetry axis and encounter the sinking colder fluid, thus causing oscillations in the temperature and flow fields. Due to flow obstruction (blockage or confinement) effect of baffles and also because of the extra heating afforded by the isothermal baffle, multi-cell recirculating vortices are observed. This additional heat is directly linked to creation of another recirculating vortex next to the baffle. In effect, hot fluid is directed into the center of the sphere disrupting thermal stratified layers. For the majority of the baffles investigated, the Nusselt numbers were generally lower than the reference cases with no baffle. The extent of heat transfer modification depends on Ra, length, and location of the extended surface. With an insulated baffle, the lowest amount of absorbed heat corresponds to a baffle positioned horizontally. Placing a baffle near the top of the sphere for high Ra number cases can lead to heat transfer enhancement that is linked to disturbance of the thermal boundary layer. With isothermal baffles, heat transfer enhancement is achieved for a baffle placed near the bottom of the sphere due to interaction of the counterclockwise rotating vortex and the stratified layer. For some high Ra cases, strong fluctuations of the flow and thermal fields indicating departure from the pseudosteady-state were observed.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


Author(s):  
Kuo-San Ho ◽  
Christopher Urwiller ◽  
S. Murthy Konan ◽  
Jong S. Liu ◽  
Bruno Aguilar

This paper explores the conjugate heat transfer (CHT) numerical simulation approach to calculate the metal temperature for the gas turbine cooled stator. ANSYS CFX12.1 code was selected to be the computational fluid dynamic (CFD) tool to perform the CHT simulation. The 2-equation RNG k-ε turbulence model with scalable modified wall function was employed. A full engine test with thermocouple measurement was performed and used to validate the CHT results. Metal temperatures calculated with the CHT model were compared to engine test data. The results demonstrated good agreement between test data and airfoil metal temperatures and cooling flow temperatures using the CHT model. However, the CHT calculations in the outer end wall had a discrepancy compared to the measured temperatures, which was due to the fact that the CHT model assumed an adiabatic wall as a boundary condition. This paper presents a process to calculate convection heat transfer coefficient (HTC) for cooling passages and airfoil surfaces using CHT results. This process is possible because local wall heat flux and fluid temperatures are known. This approach assists in calibrating an in-house conduction thermal model for steady state and transient thermal analyses.


Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath Ekkad

High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


Sign in / Sign up

Export Citation Format

Share Document