Multiobjective Collaborative Optimization

1997 ◽  
Vol 119 (3) ◽  
pp. 403-411 ◽  
Author(s):  
R. V. Tappeta ◽  
J. E. Renaud

This investigation focuses on the development of modifications to the Collaborative Optimization (CO) approach to multidisciplinary systems design, that will provide solution capabilities for multiobjective problems. The primary goal of this paper is to provide a comprehensive overview and development of mathematically rigorous optimization strategies for Multiobjective Collaborative Optimization (MOCO). Collaborative Optimization strategies provide design optimization capabilities to discipline designers within a multidisciplinary design environment. To date these CO strategies have primarily been applied to system design problems which have a single objective function. Recent investigations involving multidisciplinary design simulators have reported success in applying CO to multiobjective system design problems. In this research three Multiobjective Collaborative Optimization (MOCO) strategies are developed, reviewed and implemented in a comparative study. The goal of this effort is to provide an in depth comparison of different MOCO strategies available to system designers. Each of the three strategies makes use of parameter sensitivities within multilevel solution strategies. In implementation studies, each of the three MOCO strategies is effective in solving a multiobjective multidisciplinary systems design problem. Results indicate that these MOCO strategies require an accurate estimation of parameter sensitivities for successful implementation. In each of the three MOCO strategies these parameter sensitivities are obtained using post-optimality analysis techniques.

Author(s):  
Ravindra V. Tappeta ◽  
John E. Renaud

Abstract This investigation focuses on the development of modifications to the Collaborative Optimization (CO) approach to multidisciplinary systems design, that will provide solution capabilities for multiobjective problems. The primary goal of this research is to provide a comprehensive overview and development of mathematically rigorous optimization strategies for MultiObjective Collaborative Optimization (MOCO). Collaborative Optimization strategies provide design optimization capabilities to discipline designers within a multidisciplinary design environment. To date these CO strategies have primarily been applied to system design problems which have a single objective function. Recent investigations involving multidisciplinary design simulators have reported success in applying CO to multiobjective system design problems. In this research three MultiObjective Collaborative Optimization (MOCO) strategies are developed, reviewed and implemented in a comparative study. The goal of this effort is to provide an in depth comparison of different MOCO strategies available to system designers. Each of the three strategies makes use of parameter sensitivities within multilevel solution strategies. In implementation studies, each of the three MOCO strategies is effective in solving two multiobjective multidisciplinary systems design problems. Results indicate that these MOCO strategies require an accurate estimation of parameter sensitivities for successful implementation. In each of the three MOCO strategies these parameter sensitivities are obtained using post-optimality analysis techniques.


Author(s):  
Xiaoyu Gu ◽  
John E. Renaud ◽  
Leah M. Ashe ◽  
Stephen M. Batill ◽  
Amarjit S. Budhiraja ◽  
...  

Abstract In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg (1996a, 1998) is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming the Hazelrigg framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.


2012 ◽  
Vol 195-196 ◽  
pp. 1066-1077
Author(s):  
Wen Rui Wu ◽  
Hai Huang ◽  
Bei Bei Wu

Satellite system design is a process involving various branches of knowledge, in which the designer usually needs to tradeoff many essentials and takes remarkable time. While multidisciplinary design optimization (MDO) method provides an effective approach for complicated system design, it seems especially suitable for such kind design purpose. By applying MDO in satellite system design, the efficiency of design can be expected to be improved and powerful technical supports can be obtained, which means better performance, faster design process and lower cost. According to the Resource satellite mission, width of ground cover and ground resolution are taken as the performance measurement, which combined with total mass of satellite is accounted in the optimization objective in system level. The design variables and constraints of the problem are dealt with disciplines or subsystems such as GNC, power, structure and thermal control. Corresponding analysis modules close to practical engineering are modeled. A MDO program system is developed by integrating collaborative optimization (CO) methods in iSIGHT. The result shows that the comprehensive objective can be improved, which also indicates MDO is feasible and efficient to solve the spacecraft design problem. The technology can be consulted for further research work.


2000 ◽  
Vol 124 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoyu Gu ◽  
John E. Renaud ◽  
Leah M. Ashe ◽  
Stephen M. Batill ◽  
Amrjit S. Budhiraja ◽  
...  

In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg [1,2] is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.


Author(s):  
Brian D. Roth ◽  
Ilan M. Kroo

Astute choices made early in the design process provide the best opportunity for reducing the life cycle cost of a new product. Optimal decisions require reasonably detailed disciplinary analyses, which pose coordination challenges. These types of complex multidisciplinary problems are best addressed through the use of decomposition-based methods, several of which have recently been developed. Two of these methods are collaborative optimization (CO) and analytical target cascading (ATC). CO was conceived in 1994 in response to multidisciplinary design needs in the aerospace industry. Recent progress has led to an updated version, enhanced collaborative optimization (ECO), that is introduced in this paper. ECO addresses many of the computational challenges inherent in CO, yielding significant computational savings and more robust solutions. ATC was formalized in 2000 to address needs in the automotive industry. While ATC was originally developed for object-based decomposition, it is also applicable to multidisciplinary design problems. In this paper, both methods are applied to a set of test cases. The goal is to introduce the ECO methodology by comparing and contrasting it with ATC, a method familiar within the mechanical engineering design community. Comparison of ECO and ATC is not intended to establish the computational superiority of either method. Rather, these two methods are compared as a means of highlighting several promising approaches to the coordination of distributed design problems.


Author(s):  
David B. Dawson

The creation of a reusable learning object that is effective from instructional and system perspectives must be guided by a framework that is founded on theory and research. A combination of frameworks, the Cisco model and the grounded instructional systems design have been integrated to develop a set of templates that can be used to help developers efficiently create RLOs and the reusable information objects that comprise them. The integration of psychology foundation into learning object creation is critical to a successful implementation of RLO architecture.


2018 ◽  
Vol 29 ◽  
pp. 135-145 ◽  
Author(s):  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino ◽  
Prajwal Shiva Prakasha ◽  
Pier Davide Ciampa ◽  
...  

Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


Sign in / Sign up

Export Citation Format

Share Document