Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Ruqiang Yan ◽  
Robert X. Gao

This paper presents a signal decomposition and feature extraction technique for the health diagnosis of rotary machines, based on the empirical mode decomposition. Vibration signal measured from a defective rolling bearing is decomposed into a number of intrinsic mode functions (IMFs), with each IMF corresponding to a specific range of frequency components contained within the vibration signal. Two criteria, the energy measure and correlation measure, are investigated to determine the most representative IMF for extracting defect-induced characteristic features out of vibration signals. The envelope spectrum of the selected IMF is investigated as an indicator for both the existence and the specific location of structural defects within the bearing. Theoretical foundation of the technique is introduced, and its performance is experimentally verified.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Qingbo He ◽  
Peng Li ◽  
Fanrang Kong

Measured vibration signals from rolling element bearings with defects are generally nonstationary, and are multiscale in nature owing to contributions from events with different localization in time and frequency. This paper presents a novel approach to characterize the multiscale signature via empirical mode decomposition (EMD) for rolling bearing localized defect evaluation. Vibration signal measured from a rolling element bearing is first adaptively decomposed by the EMD to achieve a series of usable intrinsic mode functions (IMFs) carrying the bearing health information at multiple scales. Then the localized defect-induced IMF is selected from all the IMFs based on a variance regression approach. The multiscale signature, called multiscale slope feature, is finally estimated from the regression line fitted over logarithmic variances of the IMFs excluding the defect IMF. The presented feature reveals the pattern of energy transfer among multiple scales due to localized defects, representing an inherent self-similar signature of the bearing health information that is embedded on multiple analyzed scales. Experimental results verify the performance of the proposed multiscale feature, and further discussions are provided.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1946 ◽  
Author(s):  
Jiakai Ding ◽  
Liangpei Huang ◽  
Dongming Xiao ◽  
Xuejun Li

The vibration signal of an early rolling bearing is nonstationary and nonlinear, and the fault signal is weak and difficult to extract. To address this problem, this paper proposes a genetic mutation particle swarm optimization variational mode decomposition (GMPSO-VMD) algorithm and applies it to rolling bearing vibration signal fault feature extraction. Firstly, the minimum envelope entropy is used as the objective function of the GMPSO to find the optimal parameter combination of the VMD algorithm. Then, the optimized VMD algorithm is used to decompose the vibration signal of the rolling bearing and several intrinsic mode functions (IMFs) are obtained. The envelope spectrum analysis of GMPSO-VMD decomposed rolling bearing fault signal IMF1 was carried out. Moreover, the feature frequency of the four fault states of the rolling bearing are extracted accurately. Finally, the GMPSO-VMD algorithm is utilized to analyze the simulation signal and rolling bearing fault vibration signal. The effectiveness of the GMPSO-VMD algorithm is verified by comparing it with the fixed parameter VMD (FP-VMD) algorithm, complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) algorithm and empirical mode decomposition (EMD) algorithm.


2013 ◽  
Vol 278-280 ◽  
pp. 1027-1031 ◽  
Author(s):  
Xian You Zhong ◽  
Chun Hua Zhao ◽  
Hai Jiang Dong ◽  
Xian Ming Liu ◽  
Liang Cai Zeng

An approach of fault diagnosis of bearing based on empirical mode decomposition (EMD), sample entropy and 1.5 dimension spectrum was presented. Firstly, the original vibration signal was decomposed into a number of intrinsic mode functions (IMFs) using EMD. Second, the sample entropies of IMFs were calculated to select the sensitive IMF. Finally, the IMF containing fault infor- mation was analyzed with 1.5 dimension spectrum, The experimental results show the method can be used to effectively diagnose faults of rolling bearing.


2020 ◽  
Vol 327 ◽  
pp. 03003
Author(s):  
Hui Li ◽  
Xuhan Liu

A bearing fault diagnosis approach based on spectral kurtosis and empirical mode decomposition (EMD) is proposed. EMD is a signal decomposition technique, which can adaptively separate a number of intrinsic mode functions (IMFs) from the vibration signal according to the architectural characteristics of the data. The spectral kurtosis parameter takes as signal impulsive indicator. Firstly, EMD is utilized to process the sampling vibration signal. And then spectral kurtosis is calculated to select the optimal intrinsic mode functions, so as to suppress the noise and highlight the transient impact feature. Finally, the envelope spectrum is computed and the fault characteristic is recognized. The experimental results show that the proposed approach can identify bearing defects effectively and provide a reliable method for gearbox fault monitoring and diagnosis.


Author(s):  
Xueli An ◽  
Junjie Yang

A new vibration signal denoising method of hydropower unit based on noise-assisted multivariate empirical mode decomposition (NA-MEMD) and approximate entropy is proposed. Firstly, the NA-MEMD is used to decompose the signal into a number of intrinsic mode functions. Then, the approximate entropy of each component is computed. According to a preset threshold of approximate entropy, these components are reconstructed to denoise vibration signal of hydropower unit. The analysis results of simulation signal and real-world signal show that the proposed method is adaptive and has a good denoising performance. It is very suitable for online denoising of hydropower unit's vibration signal.


2013 ◽  
Vol 281 ◽  
pp. 10-13 ◽  
Author(s):  
Xian You Zhong ◽  
Liang Cai Zeng ◽  
Chun Hua Zhao ◽  
Xian Ming Liu ◽  
Shi Jun Chen

Wind turbine gearbox is subjected to different sorts of failures, which lead to the increasement of the cost. A approach to fault diagnosis of wind turbine gearbox based on empirical mode decomposition (EMD) and teager kaiser energy operator (TKEO) is presented. Firstly, the original vibration signal is decomposed into a number of intrinsic mode functions (IMFs) using EMD. Then the IMF containing fault information is analyzed with TKEO, The experimental results show that EMD and TKEO can be used to effectively diagnose faults of wind turbine gearbox.


2019 ◽  
Vol 24 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Guowang Zhou ◽  
Dongdong Li ◽  
Haohan Ren

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs) are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.


Generally, two or more faults occur simultaneously in the bearings. These Compound Faults (CF) in bearing, are most difficult type of faults to detect, by any data-driven method including machine learning. Hence, it is a primary requirement to decompose the fault vibration signals logically, so that frequencies can be grouped in parts. Empirical Mode Decomposition (EMD) is one of the simplest techniques of decomposition of signals. In this paper we have used Ensemble Empirical Mode Decomposition (EEMD) technique for compound fault detection/identification. Ensembled Empirical Mode Decomposition is found useful, where a white noise helps to detect the bearing frequencies. The graphs show clearly the capability of EEMD to detect the multiple faults in rolling bearings.


2021 ◽  
Author(s):  
Prashant Kumar Sahu ◽  
Rajiv Nandan Rai

Abstract The vibration signals for rotating machines are generally polluted by excessive noise and can lose the fault information at the early development phase. In this paper, an improved denoising technique is proposed for early faults diagnosis of rolling bearing based on the complete ensemble empirical mode decomposition (CEEMD) and adaptive thresholding (ATD) method. Firstly, the bearing vibration signals are decomposed into a set of various intrinsic mode functions (IMFs) using CEEMD algorithm. The IMFs grouping and selection are formed based upon the correlation coefficient value. The noise-predominant IMFs are subjected to adaptive thresholding for denoising and then added to the low-frequency IMFs for signal reconstruction. The effectiveness of the proposed method denoised signals are measured based on kurtosis value and the envelope spectrum analysis. The presented method results on experimental datasets illustrate that the proposed approach is an effective denoising technique for early fault detection in the rolling bearing.


Author(s):  
Parbant Singh ◽  
SP Harsha

In the present work, defect detection in rolling bearing using empirical mode decomposition of vibration signal data has been done. Higher order statistical parameters viz root mean square, kurtosis, skewness, and crest factor are utilized to diagnose bearing fault. Simulated bearing defects as spall on outer race, on roller, and on inner race are used for the study. For experimental study, four different load and speed combination have been chosen to widen the acceptability of results. The effect of bearing speed on statistical parameters is also studied. Effectiveness of signal decomposition by the empirical mode decomposition method has been established by the results. Kurtosis and crest factor values of decomposed and unprocessed signals have been selected and empirical mode decomposition-based values are shown as effective parameters for defect identification. The crest factor and Kurtosis of outer race defect show greater sensitivity to the load and speed variations, while the skewness of same defect shows its insensitivity to load and speed variations.


Sign in / Sign up

Export Citation Format

Share Document