Frictional Impact Analysis in Open-Loop Multibody Mechanical Systems

1999 ◽  
Vol 121 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. Ahmed ◽  
H. M. Lankarani ◽  
M. F. O. S. Pereira

Analysis of impact problems in the presence of any tangential component of impact velocity requires a friction model capable of correct detection of the impact modes. This paper presents a formulation for the analysis of impact problems with friction in open-loop multibody mechanical systems. The formulation recognizes the correct mode of impact; i.e., sliding, sticking, and reverse sliding. Poisson’s hypothesis is used for the definition of the coefficient of restitution, and thus the energy gains inherent with the use of the Newton’s hypothesis are avoided. The formulation is developed by using a canonical form of the system equations of motion using joint coordinates and joint momenta. The canonical momentum-balance equations are solved for the change in joint momenta using Routh’s graphical method. The velocity jumps are calculated balancing the accumulated momenta of the system during the impact process. The impact cases are classified based on the pre-impact positions and velocities, and inertia properties of the impacting systems, and expressions for the normal and tangential impulse are derived for each impact case. The classical problem of impact of a falling rod with the ground (a single object impact) is solved with the developed formulation and verified. Another classical problem of a double pendulum striking the ground (a multibody system impact) is also presented. The results obtained for the double pendulum problem confirms that the energy gain in impact analysis can be avoided by considering the correct mode of impact and using the Poisson’s instead of the Newton’s hypothesis.

Author(s):  
Hamid M. Lankarani ◽  
Murthy Ayyagari

Abstract Frictional impact analysis requires a friction model capable of correct detection of all possible impact modes such as sliding, sticking, and reverse sliding. Conventional methods for frictional impact analysis have either shown energy gain or not developed for jointed mechanical system, and especially not for closed-chain multibody systems. This paper presents a general formulation for the analysis of impact problems with friction in both open- and closed-loop multibody mechanical systems. The Poisson’s hypothesis is used for the definition of the coefficient of restitution, and thus the energy gains inherent with the use of the Newton’s hypothesis are avoided. A canonical form of the system equations of motion using Cartesian coordinates and Cartesian momenta is utilized. The canonical momentum-balance equations are formulated and solved for the change in the system Cartesian momenta using an extension of Routh’s graphical method for the normal and tangential impulses. The velocity jumps are calculated by balancing the accumulated system momenta during the contact period. The formulation is shown to recognize all modes of impact; i.e., sliding, sticking, and reverse sliding. The impact problems are classified into seven cases, and based on the pre-impact system configuration and velocities, expressions for the normal and tangential impulses are derived for each impact case. Examples including the impact of a falling rod on the ground, the tip of a double pendulum impacting the ground, and the impact of the rear wheel and suspension system of an automobile executing a very stiff bump are analyzed with the developed formulation.


1999 ◽  
Vol 122 (4) ◽  
pp. 489-497 ◽  
Author(s):  
Hamid M. Lankarani

Analysis of frictional impact in a multibody mechanical system requires a friction model capable of correct detection of all possible impact modes such as sliding, sticking, and reverse sliding. Conventional methods for frictional impact analysis have either shown energy gain or not developed for jointed mechanical system, and especially not for closed-chain multibody systems. This paper presents a general formulation for the analysis of impact problems with friction in both open- and closed-loop multibody mechanical systems. Poisson’s hypothesis is used for the definition of the coefficient of restitution, and thus the energy gains inherent with the use of Newton’s hypothesis are avoided. A canonical form of the system equations of motion using Cartesian coordinates and Cartesian momenta is utilized. The canonical momentum-balance equations are formulated and solved for the change in the system Cartesian momenta using an extension of Routh’s graphical method for the normal and tangential impulses. The velocity jumps are calculated by balancing the accumulated system momenta during the contact period. The formulation is shown to recognize all modes of impact; i.e., sliding, sticking, and reverse sliding. The impact problems are classified into seven types, and based on the pre-impact system configuration and velocities, expressions for the normal and tangential impulses are derived for each impact type. Examples including the tip of a double pendulum impacting the ground with some experimental verification, and the impact of the rear wheel and suspension system of an automobile executing a very stiff bump are analyzed with the developed formulation. [S1050-0472(00)02304-7]


Author(s):  
Shakil Ahmed ◽  
Hamid M. Lankarani ◽  
Manual F. O. S. Pereira

Abstract Analysis of impact problem in the presence of any tangential component of impact velocity requires a friction model capable of correct detection of the impact modes such as sliding, sticking, and reverse sliding. A survery of literature has shown that studies on the impact analysis of multibody systems have either been limited to the direct impact type with only a normal component of impact velocity (no frictional effect) or the ones that include friction have shown energy gains in the results due to the inherent problem in the use of Newton’s hypothesis. This paper presents a formulation for the analysis of impact problems with friction in constrained multibody mechanical systems. The formulation recognizes the correct mode of impact, i.e., sliding, sticking, and reverse sliding. The Poisson’s hypothesis is used for the definition of the coefficient of restitution, and thus the energy gains inherent with the use of Newton’s hypothesis are avoided. The formulation is developed by using a canonical form of the system equation of motion using joint coordinates and joint momenta. The use of canonical formulation is a natural way of balancing the momenta for impact problems. The joint coordinates reduces the equations of motion to a minimal set, and eliminate the complications arised from the kinematic constraint equations. The canonical form of equations are solved for the change in joint momenta using Routh’s graphical method. The velocity jumps are then calculated balancing the accumulated momenta of the system during the impact process. The impact cases are classified based on the pre-impact positions and velocities, and mass properties of the impacting systems. Analytical expressions for normal and tangential impulse are derived for each impact case. The classical problem of impact of a falling rod with the ground (a single object impact) is solved with the developed formulation, and the results are compared and verified by the solution from other studies. Another classical problem of a double pendulum striking the ground (a multibody impact) is also solved. The results obtained for the double pendulum problem confirms that the energy gain in impact analysis can be avoided by considering the correct mode of impact and using Poisson’s instead of Newton’s hypothesis.


1990 ◽  
Vol 112 (1) ◽  
pp. 119-126 ◽  
Author(s):  
J. Rismantab-Sany ◽  
A. A. Shabana

In elastic systems, impulsive forces that act at a point on a deformable body produce stress waves that travel with finite speeds. This paper examines, both theoretically and numerically, the validity of using the generalized impulse momentum approach in modeling impact or collisions in the constrained motion of deformable bodies. The generalized impulse momentum equations that involve the coefficient of restitution and the kinematic constraint Jacobian matrix are used to predict the jump discontinuity in the velocity vector as well as the joint reaction forces. The series solutions obtained by solving these algebraic equations are used to establish a closed form relationship between the jump discontinuity in velocities and joint reactions due to impact and the number of elastic degrees of freedom. It is shown that by increasing the number of elastic coordinates these series converge to their limits. The convergence of these series is used to prove that the generalized impulse momentum equations with the coefficient of restitution can be used with confidence to study impact problems in constrained multibody systems consisting of interconnected rigid and deformable bodies. The results obtained are compared with the classical treatment of the impact problems in the theory of elasticity wherein the case of perfectly plastic impact is assumed.


1999 ◽  
Vol 121 (1) ◽  
pp. 128-135 ◽  
Author(s):  
D. Wang ◽  
C. Conti ◽  
D. Beale

A new computer aided analysis method for frictionless impact problems due to interference between two bodies in a constrained multibody system is presented in this paper. A virtual contact joint concept is used to detect interference between two bodies and calculate the jump in the body momenta, velocity discontinuities and rebounds. The interference surfaces can be described by the joint coordinates of the virtual contact joint, which are very useful for determining the impact time, the types and positions of two impact surfaces and impact initial conditions when an interference happens between two bodies.


Author(s):  
Shashishekar Shivaswamy ◽  
Jianmin Li ◽  
Hamid M. Lankarani

Abstract Impact calculations suffer from several practical limitations which limit their application to establishing the approximate magnitude of the various phenomena involved. The transient force deformation response of a body subjected to impact can be explained accurately using stress wave propagation theory. As this approach is very complicated, a simpler quasi-static approach with non-linear force deformation Hertz relations can be employed for impact analysis. However, these relations can not explain the energy absorption and permanent deformations encountered during the impact. This necessitates independent non-linear force-deformation relations for compression and restitution phases of impact. In the present paper, impact tests conducted on Aluminum and Steel plates have been reported. The impact response of the system was compared with the various theoretical quasi-static force models. Considering the assumptions made in the quasi-static force models, the experimental results matched very well with the theoretical results. Non-linear force-deformation model with independent relations for compression and restitution phases was found to be the best approach to analyze impact problems. The value of the index in the non-linear force-deformation relations was found to be approximately 1.71 and 1.78 for Aluminum and Steel respectively. The values of impact parameters for a given material were found to depend on impact velocity.


The university is considered one of the engines of growth in a local economy or its market area, since its direct contributions consist of 1) employment of faculty and staff, 2) services to students, and supply chain links vendors, all of which define the University’s Market area. Indirect contributions consist of those agents associated with the university in terms of community and civic events. Each of these activities represent economic benefits to their host communities and can be classified as the economic impact a university has on its local economy and whose spatial market area includes each of the above agents. In addition are the critical links to the University, which can be considered part of its Demand and Supply chain. This paper contributes to the field of Public/Private Impact Analysis, which is used to substantiate the social and economic benefits of cooperating for economic resources. We use Census data on Output of Goods and Services, Labor Income on Salaries, Wages and Benefits, Indirect State and Local Taxes, Property Tax Revenue, Population, and Inter-Industry to measure economic impact (Implan, 2016).


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
MATHALA JULIET GUPTA ◽  
ASHISH M. PITRE ◽  
SUMATI CHAVAN PANDURNAG ◽  
SALONI SALIL VANJARI

This paper assessed the impact of the mechanization of the 8 tribal paddy farmers’ groups of Goa benefited in the year 2011 through the Tribal sub-plan program of ICAR-CCARI through results of surveys conducted in 2012 and 2015. Shift to mechanization among beneficiaries was significant in power tillers (64-100%) but less in power reapers(0-91%). Also significant saving in manpower (Power tillers:33.3% to 60%, power reapers: 33.3% to 83.3%), , time (field capacity increased (power tillers : 41.7% to141%, power reapers :58.1% to 912.8%) and cost(power tillers :44.7% to 59.1%, power reapers : 57.8% to 82.9%) was reportedthrough the use of equipment as compared to desi plough or manual methods of harvesting. Some constraints like lack of access roads and training in use and maintenance of the equipment were reported by the beneficiary farmers.


Sign in / Sign up

Export Citation Format

Share Document