Influence of Hot Streak Temperature Ratio on Low Pressure Stage of a Vaneless Counter-Rotating Turbine

Author(s):  
Zhao Qingjun ◽  
Tang Fei ◽  
Wang Huishe ◽  
Du Jianyi ◽  
Zhao Xiaolu ◽  
...  

In order to explore the influence of hot streak temperature ratio on the low pressure stage of a vaneless counter-rotating turbine, three-dimensional multiblade row unsteady Navier–Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending and outer-extending shock waves in the high pressure turbine rotor, the hotter fluid migrates toward the pressure surface of the low pressure turbine rotor, and most of the colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are dominated by the secondary flow in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the vaneless counter-rotating turbine decreases as the hot streak temperature ratio is increased.

Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Zhao Qingjun ◽  
Wang Huishe ◽  
Zhao Xiaolu ◽  
Xu Jianzhong

The results of recent studies have shown that combustor exit temperature distortion can cause excessive heat load of high-pressure turbine (HPT) rotor blades. The heating of HPT rotor blades can lead to thermal fatigue and degrade turbine performance. In order to explore the influence of hot streak temperature ratio on the temperature distributions of HPT airfoil surface, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed in a vaneless counter-rotating turbine (VCRT). The hot streak temperature ratios from 1.0 (without hot streak) to 2.4 were used in these numerical simulations, including 1.0, 1.2, 1.6, 2.0, and 2.4 temperature ratios. The hot streak is circular in shape with a diameter equal to 25%of the span. The center of the hot streak is located at 50%of span and 0%of pitch (the leading edge of the HPT stator vane). The predicted results show that the hot streak is relatively unaffected as it migrates through the HPT stator. The hot streak mixes with the vane wake and convects towards the pressure surface (PS) of the HPT rotor when it moves over the vane surface of the HPT stator. The heat load of the HPT rotor increases with the increase of the hot streak temperature ratio. The existence of the inlet temperature distortion induces a thin layer of cooler air in the HPT rotor, which separates the PS of the HPT rotor from the hotter fluid. The numerical results also indicating the migration characteristics of the hot streak in the HPT rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects that induce the high-temperature fluid migrate towards the hub on the HPT rotor. The effect of the secondary flow on the hotter fluid increases as the hot streak temperature ratio is increased. The influence of buoyancy is directly proportional to the hot streak temperature ratio. The predicted results show that the increase of the hot streak temperature ratio trends to increase the relative Mach number at the HPT rotor outlet, and decrease the relative flow angle from 25%to 75%span at the HPT rotor outlet. In the other region of the HPT outlet, the relative flow angle increases when the hot streak temperature ratio is increased. The predicted results also indicate that the isentropic efficiency of the VCRT decreases with the increase of the hot streak temperature ratio.


Author(s):  
Qingjun Zhao ◽  
Huishe Wang ◽  
Fei Tang ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

In order to reveal the effects of the hot streak/airfoil count ratio on the heating patterns of high pressure turbine rotor blades in a Vaneless Counter-Rotating Turbine, three-dimensional unsteady Navier-Stokes simulations have been performed. In these simulations, the ratio of the number of hot streaks to the number of the high pressure turbine vanes and rotors is 1:3:3, 1:2:2, 2:3:3 and 1:1:1, respectively. The numerical results show that the migration characteristics of the hot streak in the high pressure turbine rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects induce the high temperature fluid migrate towards the hub in the high pressure turbine rotor. And the combined effects become more intensified when the hot streak/airfoil count ratio increases. The results also indicate that the peak temperature of the hot streak is dissipated as the hot streak goes through the high pressure turbine vane or the rotor. The dissipated extent of the peak temperature in the high pressure turbine stator and the rotor is increased as the hot streak-to-airfoil ratio increases. And the increase of the hot streak/airfoil count ratio trends to increase the relative Mach number at the high pressure turbine outlet. The relative flow angle from 23% to 73% span at the high pressure turbine outlet decreases as the hot streak-to-airfoil ratio increases. The results also indicate that the isentropic efficiency of the Vaneless Counter-Rotating Turbine is decreased as the hot streak/airfoil count ratio increases.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Zhao Qingjun ◽  
Du Jianyi ◽  
Wang Huishe ◽  
Zhao Xiaolu ◽  
Xu Jianzhong

In this paper, three-dimensional multiblade row unsteady Navier–Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in high pressure stage of a vaneless counter-rotating turbine. The numerical results indicate that the migration characteristics of the hot streak in the high pressure turbine rotor are dominated by the combined effects of secondary flow, buoyancy, and leakage flow in the rotor tip clearance. The leakage flow trends to drive the hotter fluid toward the blade tip on the pressure surface and to the hub on the suction surface. Under the effect of the leakage flow, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the high pressure turbine rotor is intensified due to the effects of the leakage flow. And the results indicate that the leakage flow effects trend to increase the low pressure turbine rotor inlet temperature at the tip region. The air flow with higher temperature at the tip region of the low pressure turbine rotor inlet will affect the flow and heat transfer characteristics in the downstream low pressure turbine.


Author(s):  
Qingjun Zhao ◽  
Jianyi Du ◽  
Huishe Wang ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in high pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm (2.594% high pressure turbine rotor height). The numerical results indicate that the hot streak mixes with the high pressure turbine stator wake and convects towards the high pressure turbine rotor blade surface. Most of hotter fluid migrates to the pressure surface of the high pressure turbine rotor. Only a few of hotter fluid rounds the leading edge of the high pressure turbine rotor and migrates to the suction surface. The migration characteristics of the hot streak in the high pressure turbine rotor are dominated by the combined effects of secondary flow, buoyancy and leakage flow in the rotor tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface. Under the effect of the leakage flow, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the high pressure turbine rotor is intensified due to the effects of the leakage flow. And the results indicate that the leakage flow effects trend to increase the low pressure turbine rotor inlet temperature at the tip region. The air flow with higher temperature at the tip region of the low pressure turbine rotor inlet will affect the flow and heat transfer characteristics in the downstream low pressure turbine.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
P. Z. Sterzinger ◽  
S. Zerobin ◽  
F. Merli ◽  
L. Wiesinger ◽  
A. Peters ◽  
...  

Abstract This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine (LPT) stage, generated by varying the inlet flow conditions to the turbine center frame (TCF) duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure turbine (HPT) and a LPT turbine stage, connected via a TCF with non-turning struts. Four individual high-pressure turbine purge flowrates and two low-pressure turbine purge flowrates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data were acquired by means of five-hole-probe (5HP) area traverses upstream and downstream of the TCF and downstream of the LPT. A steady Reynolds-averaged Navier–Stokes (RANS) simulation taking all purge flows in account was used for comparison, and additional insights are gained from a numerical variation of the HPT and LPT purge flowrates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carryover effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multistage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions and ultimately for assessing the performance of the first LPT stage.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Author(s):  
Paul D. Orkwis ◽  
Mark G. Turner ◽  
John W. Barter

Steady state surface rothalpy results obtained with a lumped deterministic source term are compared with results obtained from a traditional nonlinear inviscid unsteady solution for an aircraft engine first stage high-pressure turbine rotor configuration. Boundary condition/potential field effects and the order of accuracy of the available schemes are shown to have a significant effect on surface rothalpy results. However, the new technique demonstrates a significant potential for including unsteady effects in time average calculations with minimal computer effort.


Author(s):  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.


Sign in / Sign up

Export Citation Format

Share Document