Impact of Varying High- and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
P. Z. Sterzinger ◽  
S. Zerobin ◽  
F. Merli ◽  
L. Wiesinger ◽  
A. Peters ◽  
...  

Abstract This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine (LPT) stage, generated by varying the inlet flow conditions to the turbine center frame (TCF) duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure turbine (HPT) and a LPT turbine stage, connected via a TCF with non-turning struts. Four individual high-pressure turbine purge flowrates and two low-pressure turbine purge flowrates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data were acquired by means of five-hole-probe (5HP) area traverses upstream and downstream of the TCF and downstream of the LPT. A steady Reynolds-averaged Navier–Stokes (RANS) simulation taking all purge flows in account was used for comparison, and additional insights are gained from a numerical variation of the HPT and LPT purge flowrates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carryover effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multistage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions and ultimately for assessing the performance of the first LPT stage.

Author(s):  
P. Z. Sterzinger ◽  
S. Zerobin ◽  
F. Merli ◽  
L. Wiesinger ◽  
A. Peters ◽  
...  

Abstract This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine stage, generated by varying the inlet flow conditions to the turbine center frame duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure (HPT) and a low-pressure (LPT) turbine stage, connected via a turbine center frame (TCF) with non-turning struts. Four individual high-pressure turbine purge flow rates and two low-pressure turbine purge flow rates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data was acquired by means of five-hole-probe area traverses upstream and downstream of the TCF, and downstream of the LPT. A steady RANS simulation taking all purge flows in account was used for comparison and additional insight are gained from a numerical variation of the HPT and LPT purge flow rates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carry-over effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multi-stage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions, and ultimately for assessing the performance of the first LPT stage.


Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


Author(s):  
Zhao Qingjun ◽  
Tang Fei ◽  
Wang Huishe ◽  
Du Jianyi ◽  
Zhao Xiaolu ◽  
...  

In order to explore the influence of hot streak temperature ratio on the low pressure stage of a vaneless counter-rotating turbine, three-dimensional multiblade row unsteady Navier–Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending and outer-extending shock waves in the high pressure turbine rotor, the hotter fluid migrates toward the pressure surface of the low pressure turbine rotor, and most of the colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are dominated by the secondary flow in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the vaneless counter-rotating turbine decreases as the hot streak temperature ratio is increased.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Author(s):  
Tobias Schubert ◽  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract A particular turbine cascade design is presented with the goal of providing a basis for high quality investigations of endwall flow at high-speed flow conditions and unsteady inflow. The key feature of the design is an integrated two-part flat plate serving as a cascade endwall at part-span, which enables a variation of the inlet endwall boundary layer conditions. The new design is applied to the T106A low pressure turbine cascade for endwall flow investigations in the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion at the Bundeswehr University Munich. Measurements are conducted at realistic flow conditions (M2th = 0.59, Re2th = 2·105) in three cases of different endwall boundary layer conditions with and without periodically incoming wakes. The endwall boundary layer is characterized by 1D-CTA measurements upstream of the blade passage. Secondary flow is evaluated by Five-hole-probe measurements in the turbine exit flow. A strong similarity is found between the time-averaged effects of unsteady inflow conditions and the effects of changing inlet endwall boundary layer conditions regarding the attenuation of secondary flow. Furthermore, the experimental investigations show, that all design goals for the improved T106A cascade are met.


Author(s):  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Benjamin Winhart ◽  
Martin Sinkwitz ◽  
Andreas Schramm ◽  
David Engelmann ◽  
Francesca di Mare ◽  
...  

In this work, we present the results of the numerical investigations of periodic wake–secondary flow interaction carried out on a low pressure turbine (LPT) equipped with modified T106-profile blades. The numerical predictions obtained by means of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations using a k-ω-model have been compared with measurements conducted in the same configuration and showed a good agreement. Based on the verified numerical data, the Q-criterion has been employed to characterize the secondary flow structures and accurately identify their origin. An analysis of the fundamental wake kinematics and the unsteady vortex migration revealed dominant interaction mechanisms such as the circumferential fluctuation of the pressure side horseshoe vortex (HSV) and its direct interaction with the passage vortex (PV) and the concentrated shed vortex (CSV). Finally, a correlation with the total pressure loss coefficient is provided and a link to the incoming wake structures is given.


Author(s):  
W. Sanz ◽  
M. Kelterer ◽  
R. Pecnik ◽  
A. Marn ◽  
E. Go¨ttlich

The demand of a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) S-shaped duct geometry. In order to investigate the influence of the blade tip gap height of a preceding rotor on such a high-diffusion duct flow a detailed measurement campaign in the Transonic Test Turbine Facility at Graz University of Technology has been performed. A high diffusion intermediate duct is arranged downstream a high-pressure turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees (counter swirl). A low-pressure vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. At the ASME 2007, results of these investigations were presented for two different tip gap heights of 1.5% span (0.8 mm) and 2.4% span (1.3 mm). In order to better understand the flow phenomena observed in the intermediate duct a detailed numerical study is conducted. The unsteady flow through the whole configuration is simulated for both gap heights as well as for a rotor with zero gap height. The unsteady data are compared at the stage exit and inside the duct to study the flow physics. The calculation of the zero gap height configuration allows to determine the influence of the tip leakage flow of the preceding rotor on the intermediate turbine duct. It turns out that for this aggressive duct the tip leakage flow has a very positive effect on the pressure recovery.


Sign in / Sign up

Export Citation Format

Share Document