Thermodynamic Analysis of Solar Energy Utilization Combined With the Exploitation of the LNG Physical Exergy

1995 ◽  
Vol 117 (4) ◽  
pp. 333-335 ◽  
Author(s):  
G. Bisio ◽  
C. Pisoni

A solar air collector system combined with LNG vaporization is analyzed in terms of energy and exergy.

Author(s):  
Cheng Tian ◽  
Chengcheng Li ◽  
Delun Chen ◽  
Yifan Li ◽  
LEI XING ◽  
...  

Designing low-cost and efficient evaporation system to maximize solar energy utilization is of great importance for the emerging solar water purification technologies. Herein, we demonstrate a universal sandwich hydrogel by...


2017 ◽  
Vol 43 (9) ◽  
pp. 6822-6830 ◽  
Author(s):  
Wutao Mao ◽  
Zhengdao Li ◽  
Keyan Bao ◽  
Kaijun Zhang ◽  
Weibo Wang ◽  
...  

2017 ◽  
Vol 4 (4) ◽  
pp. 578-580 ◽  
Author(s):  
Xiaoyong Lai

A dually ordered macro-mesoporous TiO2–rGO composite with tunable light response was developed for efficient solar energy utilization.


Solar Energy ◽  
2017 ◽  
Vol 148 ◽  
pp. 98-109 ◽  
Author(s):  
M.H. Mohamed ◽  
G.E. William ◽  
M. Fatouh

2018 ◽  
Vol 6 (8) ◽  
pp. 214-217
Author(s):  
Deepak Aryal

This paper reports analytical review results on the global and national importance of solar energy as a clean and renewable source of energy. Pre-monsoon and post monsoon seasons have higher mean monthly sunshine duration (about 8 hours/day) than summer (about 5 hours/day) and winter (about 7 hours/day) seasons in Kathmandu. The lowest sunshine duration during summer season is attributed to the effect of monsoonal clouds during that period. Pre-monsoon and monsoon seasons receive solar energy of about 250 W/m2 and 200 W/m2 respectively. The winter season receives the least amount of solar radiation (about 150 W/m2). Results show high prospect of solar energy utilization both in rural and urban areas of Nepal.


Sign in / Sign up

Export Citation Format

Share Document