Application of Some Parameter Adaptive Control Algorithms in Machining

1990 ◽  
Vol 112 (4) ◽  
pp. 611-617 ◽  
Author(s):  
M. A. Elbestawi ◽  
Y. Mohamed ◽  
L. Liu

Several parameter adaptive control strategies are applied to the problem of regulating cutting forces in end milling under varying cutting conditions. These strategies are shown, using real time control experiments, to be stable with good performance characteristics. It is also shown that the oscillatory response of the adaptive control (AC) system at low feedrates can be substantially improved using a nonlinear controller. Finally, the effect of cutter flexibility on the AC system response is investigated. It is concluded that a first-order model is adequate to represent the cutting process dynamics for a certain range of cutter stiffness.

1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3185 ◽  
Author(s):  
Shiyu Gan ◽  
Daniela Chrenko ◽  
Alan Kéromnès ◽  
Luis Le Moyne

Hybrid electric vehicles (HEVs) are very promising sustainable mobility solutions. Series, parallel and series-parallel (SP) seem to be three most promising architectures among the multitude of hybrid architectures, and it is possible to find them in a multi-applications such as the motorcycles, family-cars, hybrid city busses and sport cars. It is import to have a well configured model in order to develop the different control strategies (CsTs) for each application. Therefore, a multi-architecture/multi-application (MAMA) approach capable of identifying the most energy efficient hybrid architecture considering both the dimensions of key components: electric motor (EM), battery, internal combustion engine (ICE) and the optimal control is presented. Basis of the model is the energetic macroscopic representation (EMR), which has been combined with object oriented programming (OOP) in order to enhance its modularity and reuse capabilities. The obtained results show, that different hybrid architectures are most adapted for different applications. Moreover, the robustness of the results using real time control algorithms are studied, showing that CsT matters. The obtained results contribute to simplify and harmonize the design of hybrid solutions for multiple applications.


Author(s):  
Mervin Joe Thomas ◽  
Shoby George ◽  
Deepak Sreedharan ◽  
ML Joy ◽  
AP Sudheer

The significant challenges seen with the mathematical modeling and control of spatial parallel manipulators are its difficulty in the kinematic formulation and the inability to real-time control. The analytical approaches for the determination of the kinematic solutions are computationally expensive. This is due to the passive joints, solvability issues with non-linear equations, and inherent kinematic constraints within the manipulator architecture. Therefore, this article concentrates on an artificial neural network–based system identification approach to resolve the complexities of mathematical formulations. Moreover, the low computation time with neural networks adds up to its advantage of real-time control. Besides, this article compares the performance of a constant gain proportional–integral–derivative (PID), variable gain proportional–integral–derivative, model predictive controller, and a cascade controller with combined variable proportional–integral–derivative and model predictive controller for real-time tracking of the end-effector. The control strategies are simulated on the Simulink model of a 6-degree-of-freedom 3-PPSS (P—prismatic; S—spherical) parallel manipulator. The simulation and real-time experiments performed on the fabricated manipulator prototype indicate that the proposed cascade controller with position and velocity compensation is an appropriate method for accurate tracking along the desired path. Also, training the network using the experimentally generated data set incorporates the mechanical joint approximations and link deformities present in the fabricated model into the predicted results. In addition, this article showcases the application of Euler–Lagrangian formalism on the 3-PPSS parallel manipulator for its dynamic model incorporating the system constraints. The Lagrangian multipliers include the influence of the constraint forces acting on the manipulator platform. For completeness, the analytical model results have been verified using ADAMS for a pre-defined end-effector trajectory.


Author(s):  
Qiong Li ◽  
Wangling Yu ◽  
H. Henry Zhang

Designing a two-wheeled self-balancing scooter involves in the synergistic approach of multidisciplinary engineering fields with mutual relationships of power transmission, mass transmission, and information transmission. The scooter consists of several subsystems and forms a large-scale system. The mathematical models are in the complex algebraic and differential equations in the form of high dimension. The complexity of its controller renders difficulties in its realization due to the limit of iteration period of real time control. Routh model reduction technique is employed to convert the original high-dimensional mathematical model into a simplified lower dimensional form. The modeling is derived using a unified variational method for both mechanical and electrical subsystems of the scooter, and for the electronic components equivalent circuit method is adopted. Simulations of the system response are based on the reduced model and its control design. A prototype is developed and realized with Matlab-Labview simulation and control environment.


2013 ◽  
Vol 853 ◽  
pp. 646-651
Author(s):  
Ling Zhou ◽  
Ying Xing

This paper analyses the status of aquiculture in China and gives out some of its potential problems. In order to over these problems, Industrial fieldbus and Intranet technology are used in this paper to achieve the hardware and software design, as well as control strategies for factory aquaculture. It applies WEB server, database server and browser to establish the management platform for environment control and production process. The whole system was successfully verified at Zhenjiang production base. Through a real-time control of dissolved oxygen, temperature and PH in pond, this system stabilizes these parameters at each own optimum values, and dramatically improves the overall productivity. The test results show that this system is easy-operated and user friendly, it provides a direct and practical measure for aquiculture, and saves energy as well.


2014 ◽  
Vol 31 (4) ◽  
pp. 611-618 ◽  
Author(s):  
Hyosoo Kim ◽  
Yejin Kim ◽  
Minsoo Kim ◽  
Wenhua Piao ◽  
Jeasung Gee ◽  
...  

2018 ◽  
Vol 2017 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Manfred Schütze ◽  
Maja Lange ◽  
Michael Pabst ◽  
Ulrich Haas

Abstract This contribution serves two purposes. (1) It presents an updated version of the Astlingen example developed by the working group ‘Integral Real Time Control’ of the German Water Association (DWA), which serves as a benchmark example for the setup and evaluation of real time control strategies. As this benchmark is also intended for educational use, it demonstrates a simple RTC algorithm, illustrating the main concepts of RTC of drainage system. (2) The paper also encourages the preliminary analysis of the potential feasibility and benefit of a temporal increase of inflow to the wastewater treatment plant (WWTP) before analysing the WWTP behaviour in detail. For the present example, RTC within the sewer system alone led to almost the same reduction of overflow volume as permitting the inflow to the WWTP to be increased for 6 h within any 24 h, if at all permitted.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1034 ◽  
Author(s):  
Congcong Sun ◽  
Jan Lorenz Svensen ◽  
Morten Borup ◽  
Vicenç Puig ◽  
Gabriela Cembrano ◽  
...  

The advanced control of urban drainage systems (UDS) has great potential in reducing pollution to the receiving waters by optimizing the operations of UDS infrastructural elements. Existing controls vary in complexity, including local and global strategies, Real-Time Control (RTC) and Model Predictive Control (MPC). Their results are, however, site-specific, hindering a direct comparison of their performance. Therefore, the working group ‘Integral Real-Time Control’ of the German Water Association (DWA) developed the Astlingen benchmark network, which has been implemented in conceptual hydrological models and applied to compare RTC strategies. However, the level of detail of such implementations is insufficient for testing more complex MPC strategies. In order to provide a benchmark for MPC, this paper presents: (1) The implementation of the conceptual Astlingen system in an open-source hydrodynamic model (EPA-SWMM), and (2) the application of an MPC strategy to the developed SWMM model. The MPC strategy was tested against traditional and well-established local and global RTC approaches, demonstrating how the proposed benchmark system can be used to test and compare complex control strategies.


Sign in / Sign up

Export Citation Format

Share Document