The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel

1990 ◽  
Vol 112 (3) ◽  
pp. 245-252 ◽  
Author(s):  
D. W. Wu ◽  
Y. Matsumoto

Residual stress remaining in machined parts can be detrimental. Previous experimental evidence shows that hardness has a significant effect on its formation. Yet, no satisfactory explanation is available for the causes of such a phenomenon. This work seeks to understand the mechanism of residual stress formation and explain the effect of hardness on it. The analysis is based on the existence of several measurable factors that influence the stress field in the work-material during the cutting process. The sensitivity of these factors to hardness allows establishment of relationships between the hardness and the material loading cycle. The results of the analysis indicate that the residual stress pattern is correlated most strongly to the orientation of the primary deformation zone in metal cutting. This correlation provides a good explanation for the role of the material hardness on the residual stress formation.

Author(s):  
David Curtis ◽  
Holger Krain ◽  
Andrew Winder ◽  
Donka Novovic

The grinding process is often maligned by grinding burn; which refers to many unwanted effects, including residual stress formation. This paper presents an overview of the role of grinding wheel technologies in the surface response and residual stress formation of thin section Inconel 718. Using production standard equipment, conventional abrasive vitrified, and super abrasive electroplated wheel technologies were evaluated in initial comparative trials. Results revealed the dominant residual stress profiles, which manifested as measurable distortion and the thermo-mechanical impact of grinding, such as softening. Following this, a parametric study was carried out using cubic boron nitride super abrasive electroplated wheels to investigate the interaction of grinding parameters on the generated output. It was shown that at increased grinding aggressions, tensile stress regimes increased resulting in increased distortion magnitudes. The study highlights the importance of assessing residual stress formation when manipulating both wheel technologies and grinding parameters. It is envisaged that with additional assessment, a route to an engineered residual stress profile might be achieved.


2019 ◽  
Vol 50 (9) ◽  
pp. 4178-4192 ◽  
Author(s):  
Tuomas Jokiaho ◽  
Suvi Santa-aho ◽  
Pasi Peura ◽  
Minnamari Vippola

Author(s):  
T. D. Marusich ◽  
S. Usui ◽  
R. J. McDaniel

Controlling residual stress in machined workpiece surfaces is necessary in situations where service requirements subject structural members to cyclic fatigue loading. It is desirable to have a predictive capability when attempting to optimize machined parts for cost while taking into account residual stress considerations. One such method of machining modeling is application of the finite element method (FEM). A three-dimensional FEM model is presented which includes fully adaptive unstructured mesh generation, tight thermo-mechanically coupling, deformable tool-chip-workpiece contact, interfacial heat transfer across the tool-chip boundary, momentum effects at high speeds and constitutive models appropriate for high strain rate, finite deformation analyses. The FEM model is applied to nose turning operations with stationary tools. To substantiate the efficacy of numerical and constitutive formulations used, metal cutting tests are performed, residual stress profiles collected, and validation comparison is made.


1983 ◽  
Vol 105 (3) ◽  
pp. 133-136 ◽  
Author(s):  
A. Israeli ◽  
J. Benedek

The production of precision parts requires manufacturing processes which produce low residual stresses. This study was designed to investigate the parametric relationship between machining processes and residual stress distribution. Sets of steel specimens were single point turned at different feeds. The residual stress profiles of these specimens were monitored, using a continuous etching technique. A “Specific Instability Potential” parameter, derived from the strain energy of the residual stresses, was found to relate directly to the machining parameters. It is suggested that the Specific Instability Potential can be used as a parameter for specifying processing operations.


2016 ◽  
Vol 693 ◽  
pp. 900-905
Author(s):  
W.W. Song ◽  
J.L. Wang ◽  
H.F. Wang ◽  
Dun Wen Zuo

In this paper, the effect of the cutting heat on the workpiece in the processing was studied. Its essence is to study relationship between the workpiece temperature variation and internal residual stress distribution. In the specific problem-solving process, the metal cutting theory, finite element related knowledge and metal elastoplastic deformation theory were combined, and established a mathematical model which was suitable for the model of the milling temperature and residual stress in the milling process. It would provide theoretical support for future study on milling deformation mechanism.


2021 ◽  
Vol 12 (1) ◽  
pp. 5-9
Author(s):  
N. N. Sergeev ◽  
A. N. Sergeev ◽  
S. N. Kutepov ◽  
A. E. Gvozdev ◽  
A. G. Kolmakov ◽  
...  

2021 ◽  
Vol 426 ◽  
pp. 127747
Author(s):  
E.J. Herrera-Jimenez ◽  
N. Vanderesse ◽  
E. Bousser ◽  
T. Schmitt ◽  
P. Bocher ◽  
...  

2014 ◽  
Vol 496-500 ◽  
pp. 2444-2451
Author(s):  
Qiang Zeng ◽  
Dai Qin Tao ◽  
Zheng Zhou ◽  
Xiao Qian Li

Basing on a giant truss, this passage did a macro assessment of welding resjdual stress by the changes of material hardness which was measured by brinell hardness method after welding. This experiment measured about 1728 measurement points on 72 nodes. Statistical analysis of the hardness data shows that hardness of base metal decreases in the area of HAZ ,and plastic of welded joints increases.


Sign in / Sign up

Export Citation Format

Share Document