Performance Deterioration in Industrial Gas Turbines

1992 ◽  
Vol 114 (2) ◽  
pp. 161-168 ◽  
Author(s):  
I. S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.

Author(s):  
Ihor S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Wilfried P. J. Visser ◽  
Michael J. Broomhead

NLR’s primary tool for gas turbine engine performance analysis is the ‘Gas turbine Simulation Program’ (GSP), a component based modeling environment. GSP’s flexible object-oriented architecture allows steady-state and transient simulation of any gas turbine configuration using a user-friendly drag&drop interface with on-line help running under Windows95/98/NT. GSP has been used for a variety of applications such as various types of off-design performance analysis, emission calculations, control system design and diagnostics of both aircraft and industrial gas turbines. More advanced applications include analysis of recuperated turboshaft engine performance, lift-fan STOVL propulsion systems, control logic validation and analysis of thermal load calculation for hot section life consumption modeling. In this paper the GSP modeling system and object-oriented architecture are described. Examples of applications for both aircraft and industrial gas turbine performance analysis are presented.


Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Edward Roesch ◽  
Ramesh Subramanian ◽  
Andrew Burns ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the tens of millions of dollars per year. Knowledge of the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources via increased operational flexibility, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. The U.S. Department of Commerce’s National Institute of Standards and Technology – Advanced Technology Program (NIST-ATP) awarded the Joint Venture team of Siemens Power Generation, Inc. and MesoScribe Technologies, Inc. a four-year, $5.4 million program in November, 2004, titled Conformal, Direct-Write-Technology-Enabled, Wireless, Smart Turbine Components. The target was to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in both the compressor and turbine sections. The approach involves several difficult engineering challenges, including the need to embed sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, protecting both sensors and wireless devices from the extreme temperatures and environments of an operating gas turbine, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The program included full-scale, F-class industrial gas turbine engine test demonstrations with smart components in both the compressor and turbine sections. The results of the development program and engine testing to date will be discussed.


Author(s):  
Miles Coppinger ◽  
Graham Cox ◽  
John Hannis ◽  
Nigel Cox

A whole gas-turbine engine model has been developed incorporating all of the key turbomachinery aerothermal relationships. The aim of the model has been to predict trends in gas-turbine performance with a high degree of confidence that they reflect real engine design limitations. Simple cycles, recuperated, inter-cooled, and inter-cooled recuperated cycles can be assessed across a wide of range of operating parameters. The model is spreadsheet-based with additional macro programming. The major part of it is concerned with establishing representative overall turbine characteristics. A non-integer number of stages is determined as a function of technology level inputs. Individual stage geometry features are derived allowing the calculation of the coolant requirements and efficiencies. The results of various studies are presented for a number of cycle types. The resulting trends are believed to be sensible because of the realistic turbine features. Confidence in the method is established by the modelling of a number of existing industrial gas turbines.


Author(s):  
Gregory S. Corman ◽  
Jeffrey T. Heinen ◽  
Raymond H. Goetze

Conceptual design evaluations of the use of continuous fiber ceramic composite (CFCC) turbine shrouds and combustor liners in an industrial gas turbine engine were performed under Phase 1 of the DOE CFCC program. Significant engine performance improvements were predicted with the use of CFCC components. Five composite systems were evaluated for use as shrouds and combustor liners, the results of which are discussed with particular reference to Toughened Silcomp. Several current CFCC materials were judged to be relatively close to meeting the short term performance requirements of such a system. However, additional CFCC property data are required for significant component design optimization and life prediction, two key design steps that must be completed before ceramic composites can be utilized in large gas turbines.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


Author(s):  
Uyioghosa Igie ◽  
Marco Abbondanza ◽  
Artur Szymański ◽  
Theoklis Nikolaidis

Industrial gas turbines are now required to operate more flexibly as a result of incentives and priorities given to renewable forms of energy. This study considers the extraction of compressed air from the gas turbine; it is implemented to store heat energy at periods of a surplus power supply and the reinjection at peak demand. Using an in-house engine performance simulation code, extractions and injections are investigated for a range of flows and for varied rear stage bleeding locations. Inter-stage bleeding is seen to unload the stage of extraction towards choke, while loading the subsequent stages, pushing them towards stall. Extracting after the last stage is shown to be appropriate for a wider range of flows: up to 15% of the compressor inlet flow. Injecting in this location at high flows pushes the closest stage towards stall. The same effect is observed in all the stages but to a lesser magnitude. Up to 17.5% injection seems allowable before compressor stalls; however, a more conservative estimate is expected with higher fidelity models. The study also shows an increase in performance with a rise in flow injection. Varying the design stage pressure ratio distribution brought about an improvement in the stall margin utilized, only for high extraction.


2020 ◽  
Vol 51 (9) ◽  
pp. 4902-4921 ◽  
Author(s):  
Sabin Sulzer ◽  
Magnus Hasselqvist ◽  
Hideyuki Murakami ◽  
Paul Bagot ◽  
Michael Moody ◽  
...  

Abstract Industrial gas turbines (IGT) require novel single-crystal superalloys with demonstrably superior corrosion resistance to those used for aerospace applications and thus higher Cr contents. Multi-scale modeling approaches are aiding in the design of new alloy grades; however, the CALPHAD databases on which these rely remain unproven in this composition regime. A set of trial nickel-based superalloys for IGT blades is investigated, with carefully designed chemistries which isolate the influence of individual additions. Results from an extensive experimental characterization campaign are compared with CALPHAD predictions. Insights gained from this study are used to derive guidelines for optimized gas turbine alloy design and to gauge the reliability of the CALPHAD databases.


1975 ◽  
Author(s):  
R. H. Knorr ◽  
G. Jarvis

This paper describes the maintenance requirements of the heavy-duty gas turbine. The various inspections and factors affecting maintenance are defined, and basic guidelines are presented for a planned maintenance program.


Sign in / Sign up

Export Citation Format

Share Document