Development of a Regenerator for an Automotive Gas Turbine Engine

1993 ◽  
Vol 115 (2) ◽  
pp. 424-431 ◽  
Author(s):  
J. Sayama ◽  
T. Morishita

It is vital to estimate the temperature effectiveness and pressure loss of the regenerator accurately when designing a gas turbine engine because these characteristics basically determine the size, weight, and fuel consumption of the regenerative gas turbine engine. In operation of an actual engine, regenerators often fail to attain the characteristics predicted by conventional methods, because there are many performance-reducing irregularities such as the nonuniform velocity distribution of gases flowing into the core. In this paper, a prediction method that is based on data from actual engine tests is examined as a way to predict regenerator temperature effectiveness and pressure losses when there are causes for deterioration of these characteristics. This method resulted in a system, taking the deterioration of these characteristics into consideration as they occur in an actual engine, that represents temperature effectiveness and pressure loss as the function of core specifications such as the core size and the core matrix. This prediction method was then used to predict the regenerator characteristics of actual engines with more than satisfactory results (the accuracy is ±1.25 percent for temperature effectiveness and ±4 percent for pressure loss).

Author(s):  
Junichi Sayama ◽  
Teru Morishita

It is vital to accurately estimate the temperature effectiveness and pressure loss of the regenerator when designing a gas turbine engine because these characteristics basically determine the size, weight, and fuel consumption of the regenerative gas turbine engine. In operation of an actual engine, regenerators often fail to attain the characteristics predicted by conventional methods, because there are many performance-reducing irregularities such as the non-uniform velocity distribution of gases flowing into the core. In this paper, a prediction method that is based on data from actual engine tests is examined as a way to predict regenerator temperature effectiveness and pressure losses when there are causes for deterioration of these characteristics. This method resulted in a system, taking the deterioration of these characteristics into consideration as they occur in an actual engine, that represents temperature effectiveness and pressure loss as the function of core specifications such as the core size and the core matrix. This prediction method was then used to predict the regenerator characteristics of actual engines with more than satisfactory results (The accuracy is ±1.25% for temperature effectiveness and ±4% for pressure loss).


Author(s):  
Paul T. Vickers

The major considerations in the selection, design and development of a rotary regenerator for a vehicular gas turbine are discussed. The performance results, such as effectiveness, pressure loss and leakage of the regenerator in the General Motors Research GT-305 gas-turbine engine are presented in detail. A method for evaluating new heat-exchanger surfaces and the techniques used in developing the regenerator are also included.


Author(s):  
Onome E. Scott-Emuakpor ◽  
Herman Shen ◽  
Tommy George ◽  
Charles Cross

A new energy-based life prediction framework for calculation of axial and bending fatigue results at various stress ratios has been developed. The purpose of the life prediction framework is to assess the behavior of materials used in gas turbine engines, such as Titanium 6Al-4V (Ti 6Al-4V) and Aluminum 6061-T6 (Al 6061-T6). The work conducted to develop this energy-based framework consists of the following entities: (1) a new life prediction criterion for axial and bending fatigue at various stress ratios for Al 6061-T6, (2) the use of the previously developed improved uniaxial energy-based method to acquire fatigue life prior to endurance limit region (Scott-Emuakpor et al., 2007, “Development of an Improved High Cycle Fatigue Criterion,” ASME J. Eng. Gas Turbines Power, 129, pp. 162–169), (3) and the incorporation of a probabilistic energy-based fatigue life calculation scheme to the general uniaxial life criterion (the first entity of the framework), which is capable of constructing prediction intervals based on a specified percent confidence level. The precision of this work was verified by comparison between theoretical approximations and experimental results from recently acquired Al 606-T6 and Ti 6Al-4V data. The comparison shows very good agreement, thus validating the capability of the framework to produce accurate uniaxial fatigue life predictions for commonly used gas turbine engine materials.


Author(s):  
Christopher J. Spytek

An Inter-Turbine Burner (ITB) that is capable of increasing the thrust of a gas turbine engine with minimal effect on SFC has been developed. Gas turbine engines using multistage turbine sections have the inherent disadvantage of temperature loss through the turbine section. This occurs when each successive turbine stage extracts energy from the superheated mass airflow stream. The net result is limited energy potential due to the first stage turbine temperature limits. An Inter-Turbine Burner (ITB) is able to utilize constant temperature burning through the turbine section by adding burners between the turbine stages. The resultant engine is suited for missions requiring large amounts of constant or intermittent power extraction. The Spytek ITB incorporates a modified version of an Ultra-Compact Combustor (UCC) [1] (high-g burner) which was originally developed by the Air Force Research Laboratory in Dayton, Ohio. The ITB has been incorporated into a gas turbine engine and has been successfully tested operating at a near constant temperature (NCT) cycle. The engine/ITB is specifically configured and packaged for high power density use. Temperature rises across the ITB (T6-7) were tested in ranges from 421K-588K with representative increases in power take-off noted. The burner, positioned directly upstream of the ITB turbine, operates with vitiated air taken directly from the core engine exhaust stream. The engine tested is a two spool turbo-jet (ITB shaft inclusive), in the 1334(N) class. The ITB is cross shaft linked to an axial compressor booster stage, attached to the engine inlet which super-charged the core engine. The two major areas addressed in development were the ability to provide air into the primary burn zone of the ITB to sustain combustion and second, the ability to successfully entrain the combustion products from the ITB vortex chamber into the main air stream without causing undue restrictions or hot-streak problems which can affect the life of the ITB turbine. Flexibility in ITB testing is further enhanced through the use of two adjustable test features, 1) a variable flow splitter, capable of adjusting the amount of air diverted into the ITB combustor, and 2) a variable nozzle guide vane pack upstream of the ITB turbine. A proprietary entrainment system rapidly mixes the ITB combustor products with the main stream dilute flow products without any undo effects on the ITB turbine. The Mark#1 version of the ITB system exhibits power on demand increases of 16%–22%.


2017 ◽  
Vol 19 (1) ◽  
pp. 337-344
Author(s):  
Béla VARGA ◽  
◽  
Gyula ÓVÁRI ◽  
László KAVAS ◽  
◽  
...  

1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

Sign in / Sign up

Export Citation Format

Share Document