Nonlinear Stress Modeling Scheme to Analyze Semiconductor Packages Subjected to Combined Thermal and Hygroscopic Loading

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Samson Yoon ◽  
Changsoo Jang ◽  
Bongtae Han

A nonlinear finite element modeling (FEM) scheme to analyze the combined effect of thermal and hygroscopic deformation is presented. The scheme employs the conventional moisture diffusion, heat transfer, and stress analysis routines available in the commercial FEM package, but offers a unique way of linking the routines to conduct a nonlinear stress analysis of semiconductor packages subjected to moisture as well as temperature excursions. Strategies to implement the proposed scheme using commercial finite element analysis softwares are discussed. The numerical accuracy of the scheme is confirmed with the analytical solution of elastic/viscoelastic composite cylinder subjected to the combined loading of thermal expansion and hygroscopic swelling.

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ibrahim M. Gadala ◽  
Magd Abdel Wahab ◽  
Akram Alfantazi

An integrative numerical simulation approach for pipeline integrity analysis is presented in this work, combining a corrosion model, which is the main focus of this paper, with a complementary structural nonlinear stress analysis, using the finite element method (FEM). Potential distributions in the trapped water existing beneath pipeline coating disbondments are modeled in conjunction with reaction kinetics on the corroding exposed steel surface using a moving boundary mesh. Temperature dependencies (25 °C and 50 °C) of reaction kinetics do not greatly affect final corrosion defect geometries after 3-yr simulation periods. Conversely, cathodic protection (CP) levels and pH dependencies within the near-neutral pH range (6.7–8.5) strongly govern depth profiles caused by corrosion, reaching a maximum of ∼3 mm into the pipeline wall. A 0.25 V amplification of CP potential combined with a 0.5 mm widening in disbondment opening size reduces defect penetration by almost 30%. Resulting corrosion defect geometries are used for stress examinations and burst pressure evaluations. Furthermore, nonlinear elastic–plastic stress analysis is carried out using shell elements in order to predict the burst pressure of corroded pipes. Corrosion is modeled by reducing the stiffness of a damaged element that has the dimensions of the defect. The predicted burst pressures are in good agreement with those obtained using an experimental-based formula.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


1979 ◽  
Vol 22 (4) ◽  
pp. 0955-0960 ◽  
Author(s):  
Robert J. Gustafson ◽  
David R. Thompson ◽  
Shahab Sokhansanj

Sign in / Sign up

Export Citation Format

Share Document