hygroscopic swelling
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 52
Author(s):  
Veronika Kapsali ◽  
Julian Vincent

Botanical nastic systems demonstrate non-directional structural responses to stimuli such as pressure, light, chemicals or temperature; hygronasty refers to systems that respond specifically to moisture. Many seed dispersal mechanisms such as wheat awns, legume pods, spruce and pinecones fall within this classification. The variety of behaviours varies greatly from opening and closing to self-digging, but the mechanism is based on differential hygroscopic swelling between two adjacent areas of tissue. We describe the application of hygronastic principles specifically within the framework of textiles via the lens of structural hierarchy. Two novel prototypes are presented. One is designed to increase its permeability to airflow in damp conditions and reduce permeability in the dry by 25–30%, a counterintuitive property compared to conventional cotton, wool and rayon textiles that decrease their permeability to airflow as their moisture content increases. The second prototype describes the design and development of a hygroscopic shape changing fibre capable of reducing its length in damp conditions by 40% when compared with dry.


Author(s):  
Pinki Kumari ◽  
Kuldeep Singh ◽  
Anuj Singal

Today, Hygroscopic swelling is one of the biggest challenging problem of Epoxy mold compound (EMC) in packaging with Microelectromechanical system (MEMS) devices. To overcome this hygroscopic swelling problem of EMC and guard the devices, MEMS devices are molded in this paper with different Mold Compound (MC) i.e. titanium and ceramic etc. during their interconnection with the board. Also, a comparatively performance analysis of this various mold compound with MEMS pressure sensor has been studied in this paper at 60% humidity, 140 mol/m<sup>3</sup> saturation concentration and 25 <sup>o</sup>C. It was observed that hygroscopic swelling does not take place in the titanium mold compound. But, titanium is very costly so we have to consider something cheaper material i.e. ceramic in this paper. The Hygroscopic swelling in Ceramic Mold Compound after 1 year is nearly 0.05mm which is very less than epoxy.


Cellulose ◽  
2019 ◽  
Vol 27 (2) ◽  
pp. 611-620 ◽  
Author(s):  
Qi Chen ◽  
Changhua Fang ◽  
Ge Wang ◽  
Xinxin Ma ◽  
Meiling Chen ◽  
...  

2019 ◽  
Vol 30 (23) ◽  
pp. 20471-20478 ◽  
Author(s):  
Md Ashraful Hoque ◽  
Robert Kelley Bradley ◽  
Jiajie Fan ◽  
Xuejun Fan

Abstract Silicone/phosphor composite, which serve as mechanical protection and light conversion material, is an integral part of white light-emitting diode (LED) package. In this paper, a comprehensive study is conducted to investigate the effect of humidity and phosphor on moisture absorption, hygroscopic swelling, mechanical behavior, as well as thermal properties of silicone/phosphor composite in comparison with the pure silicone. SEM/EDAX and FTIR were performed to identify the phosphor and silicone compositions. Through moisture sorption test, it has been observed that the addition of phosphor significantly lowers the capacity of moisture absorption, but accelerates the diffusivity of moisture absorption. The hygroscopic swelling test showed that the phosphor has little effect on the swelling compared to the pure silicone sample. Both moisture absorption/desorption and hygroscopic swelling/de-swelling are reversible. Strain ramp test revealed that the phosphor enhances the stiffness of the composite. The moisture absorption, however, has negligible impact on mechanical stiffness for both pure and composite samples. Finally, thermal expansion test showed that the coefficient of thermal expansion does not change with the addition of phosphor into pure silicone.


2019 ◽  
Vol 75 ◽  
pp. 159-166 ◽  
Author(s):  
Rawdha Kessentini ◽  
Olga Klinkova ◽  
Imad Tawfiq ◽  
Mohamed Haddar

2019 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Andrey Krauklis ◽  
Abedin Gagani ◽  
Andreas Echtermeyer

Swelling in fiber-reinforced composites is anisotropic. In this work, dealing with glass fiber epoxy composite immersed in distilled water, swelling coefficients are obtained in each direction experimentally. Swelling behaviour in the fiber direction was constrained by the non-swelling fibers and was close to null, while swelling in the transverse directions was found to occur freely—similar to the unconstrained polymer. An analytical method for predicting anisotropic swelling in composites from the swelling of the matrix polymer is reported in this work. The method has an advantage that it is simple to use in practice and requires only a swelling coefficient of the matrix polymer, elastic constants of the matrix and fibers, and a known fiber volume fraction of the composite. The method was validated using finite element analysis. Good agreement was obtained and is reported between experimental hygroscopic swelling data, analytical and numerical results for composite laminates, indicating the validity of this predictive approach.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 230 ◽  
Author(s):  
Lei Wang ◽  
Mengting Wang ◽  
Mingming Guo ◽  
Xingqian Ye ◽  
Tian Ding ◽  
...  

Understanding the hydration behavior of cereals during cooking is industrially important in order to optimize processing conditions. In this study, barley porridge was cooked in a sealed tin can at 100, 115, and 121 °C, respectively, and changes in water uptake and hygroscopic swelling in dehulled barley grains were measured during the cooking of canned porridge. In order to describe and better understand the hydration behaviors of barley grains during the cooking process, a three-dimensional (3D) numerical model was developed and validated. The proposed model was found to be adequate for representing the moisture absorption characteristics with a mean relative deviation modulus (P) ranging from 4.325% to 5.058%. The analysis of the 3D simulation of hygroscopic swelling was satisfactory for describing the expansion in the geometry of barley. Given that the model represented the experimental values adequately, it can be applied to the simulation and design of cooking processes of cereals grains, allowing for saving in both time and costs.


2018 ◽  
Vol 84 ◽  
pp. 208-214 ◽  
Author(s):  
Ibrahim Khalilullah ◽  
Talukder Reza ◽  
Liangbiao Chen ◽  
Mark Placette ◽  
A.K.M. Monayem H. Mazumder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document