Elasto-Plastic Finite Element Analysis of Repeated Three-Dimensional, Elliptical Rolling Contact With Rail Wheel Properties

1991 ◽  
Vol 113 (3) ◽  
pp. 434-441 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper presents an elasto-plastic analysis of the repeated, frictionless, three-dimensional rolling contact similar to the ones produced by the rail-wheel geometry. This paper treats an elliptical contact rolling across a semi-infinite half space. The contact shape and loading: semi-major axis (in the rolling direction), w1 = 8 mm, and semi-minor axis, w2 = 5.88 mm, reflect standard rail and wheel curvatures and a wheel load of 149 KN (33,000 lb). A three-dimensional, elasto-plastic finite element model, developed earlier, is employed together with the elastic-linear-kinematic-hardening-plastic (ELKP) idealization of the cyclic plastic behaviour of a material similar to rail and wheel steels. The calculations present the displacements, the stress-strain distributions, stress-plastic strain histories and the plastic strain ranges in the half-space. The cyclic plasticity approaches a steady state after one contact with further contacts producing open but fully reversed stress-strain hysteresis loops, i.e., plastic shakedown.

1991 ◽  
Vol 58 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes calculations for repeated, frictionless, three-dimensional rolling contact, for a relative peak pressure (po/k) of 6.0 (above the shakedown limit) for a circular contact patch. This analysis was carried out for two material responses, elastic-perfectly plastic (EPP) and elastic-linear-kinematic-hardening plastic (ELKP), using the elasto-plastic finite element model developed earlier. The ELKP material parameters are those appropriate for hardened bearing steel. Frictionless three-dimensional rolling contact is simulated by repeatedly translating a Hertzian pressure distribution across the surface of an elasto-plastic half space. The half space is represented by a finite mesh with elastic boundaries. The paper describes the complex stress state existing in the half space and the attending plasticity, as the load translates. The calculations present the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain increments in the vicinity of the contact. Compared with the analyses at the shakedown limit, higher residual stresses and strains are observed.


1990 ◽  
Vol 57 (1) ◽  
pp. 57-65 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes a three-dimensional elastoplastic finite element model of repeated, frictionless rolling contact. The model treats a sphere rolling on an elastic-perfectly plastic and an elastic-linear-kinematic-hardening plastic, semi-infinite half space. The calculations are for a relative peak pressure (po/k) = 4.68 (the theoretical shakedown limit for perfect plasticity). Three-dimensional rolling contact is simulated by repeatedly translating a hemispherical (Hertzian) pressure distribution across an elastoplastic semi-infinite half space. The semi-infinite half space is represented by a finite mesh with elastic boundaries. The calculations describe the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain ranges in the vicinity of the contact.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Tao He ◽  
Dong Zhu ◽  
Jiaxu Wang

Surface plastic deformation due to contact (lubricated or dry) widely exists in many mechanical components, as subsurface stress caused by high-pressure concentrated in the contact zone often exceeds the material yielding limit, and the plastic strain accumulates when the load is increased and/or repeatedly applied to the surface in a rolling contact. However, previous plasto-elastohydrodynamic lubrication (PEHL) studies were mainly for the preliminary case of having a rigid ball (or roller) rotating on a stationary elastic–plastic flat with a fixed contact center, for which the numerical simulation is relatively simple. This paper presents an efficient method for simulating PEHL in a rolling contact. The von Mises yield criteria are used for determining the plastic zone, and the total computation domain is discretized into a number of cuboidal elements underneath the contacting surface, each one is considered as a cuboid with uniform plastic strain inside. The residual stress and surface plastic deformation resulted from the plastic strain can be solved as a half-space eigenstrain–eigenstress problem. A combination of three-dimensional (3D) and two-dimensional (2D) discrete convolution and fast Fourier transform (DC-FFT) techniques is used for accelerating the computation. It is observed that if a rigid ball rolls on an elastic–plastic surface, the characteristics of PEHL lubricant film thickness and pressure distribution are different from those of PEHL in the preliminary cases previously investigated. It is also found that with the increase of rolling cycles, the increment of plastic strain accumulation gradually approaches a stable value or drops down to zero, determined by the applied load and the material hardening properties, eventually causing a groove along the rolling direction. Simulation results for different material hardening properties are also compared to reveal the effect of body materials on the PEHL behaviors.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
John A. R. Bomidi ◽  
Farshid Sadeghi

In this investigation, a three-dimensional (3D) finite element (FE) model was developed to study subsurface initiated spalling observed in rolling line contact of tribo components such as bearings. An elastic–kinematic hardening–plastic material model is employed to capture the material behavior of bearing steel and is coupled with the continuum damage mechanics (CDM) approach to capture the material degradation due to fatigue. The fatigue damage model employs both stress and accumulated plastic strain based damage evolution laws for fatigue failure initiation and propagation. Failure is modeled by mesh partitioning along unstructured, nonplanar, intergranular paths of the microstructure topology represented by randomly generated Voronoi tessellations. The elastic–plastic model coupled with CDM was used to predict both ratcheting behavior and fatigue damage in heavily loaded contacts. Fatigue damage induced due to the accumulated plastic strains around broken intergranular joints drive the majority of the crack propagation stage, resulting in a lower percentage of life spent in propagation. The 3D FE model was used to determine fatigue life at different contact pressures ranging from 2 to 4.5 GPa for 33 different randomly generated microstructure topology models. The effect of change in contact pressure due to subsurface damage and plastic strain accumulation was also captured by explicitly modeling the rolling contact geometry and the results were compared to those generated assuming a Hertzian pressure profile. The spall shape, fatigue lives, and their dispersion characterized by Weibull slopes obtained from the model correlate well with the previously published experimental results.


1995 ◽  
Vol 117 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Maria M.-H. Yu ◽  
Brian Moran ◽  
Leon M. Keer

A novel treatment of a direct procedure for elastic-plastic analysis and shakedown is presented and its application to problems in three-dimensional rolling contact with or without case-hardened layers is demonstrated. The direct approach consists of an operator split technique, which transforms the elastic-plastic problem into a purely elastic problem and a residual problem with prescribed eigenstrains. These eigenstrains are determined using an incremental projection method based on the purely elastic solution and a special representation of the yield condition for a linear-kinematic hardening material. The three-dimensional residual problem is then further split into a plane problem and an anti-plane problem which are readily solved using the finite element method. A significant advantage of the present analysis over the alternative approach of simulating repeated rolling until shakedown occurs is that in the present analysis, the final shakedown solution is obtained directly by solving three elasticity problems. Results are compared with full elastic-plastic finite element calculations available from the literature and good agreement is observed. The effects of surface hardened layers on the distributions of residual stress and displacement are investigated for both two- and three-dimensional contact. The direct approach is shown to be a straightforward and efficient method for obtaining the steady state solution in the analysis of three-dimensional problems in rolling and/or sliding contact.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Work hardening and Bauschinger effects on plastic deformation and fatigue life for a beam and an elbow under cyclic loading are examined using finite element analysis (FEA). Three typical material plastic hardening models, i.e. isotropic, kinematic and combined isotropic/kinematic hardening models are adopted in the FEA calculations. Based on the FEA results of cyclic stress and strain at a critical location and using an energy-based fatigue damage parameter, the fatigue lives are predicted for the beam and elbow. The results show that (1) the three material hardening models determine similar stress at the critical location with small differences during the cyclic loading, (2) the isotropic model underestimates the cyclic plastic strain and overestimates the fatigue life, (3) the kinematic model overestimates the cyclic plastic strain and underestimates the fatigue life, and (4) the combined model predicts the intermediate cyclic plastic strain and reasonable fatigue life.


1985 ◽  
Vol 107 (1) ◽  
pp. 231-237 ◽  
Author(s):  
A. Kaufman

A simplified inelastic analysis computer program (ANSYMP) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects can be calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials, and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document