Simulation of Plasto-Elastohydrodynamic Lubrication in a Rolling Contact

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Tao He ◽  
Dong Zhu ◽  
Jiaxu Wang

Surface plastic deformation due to contact (lubricated or dry) widely exists in many mechanical components, as subsurface stress caused by high-pressure concentrated in the contact zone often exceeds the material yielding limit, and the plastic strain accumulates when the load is increased and/or repeatedly applied to the surface in a rolling contact. However, previous plasto-elastohydrodynamic lubrication (PEHL) studies were mainly for the preliminary case of having a rigid ball (or roller) rotating on a stationary elastic–plastic flat with a fixed contact center, for which the numerical simulation is relatively simple. This paper presents an efficient method for simulating PEHL in a rolling contact. The von Mises yield criteria are used for determining the plastic zone, and the total computation domain is discretized into a number of cuboidal elements underneath the contacting surface, each one is considered as a cuboid with uniform plastic strain inside. The residual stress and surface plastic deformation resulted from the plastic strain can be solved as a half-space eigenstrain–eigenstress problem. A combination of three-dimensional (3D) and two-dimensional (2D) discrete convolution and fast Fourier transform (DC-FFT) techniques is used for accelerating the computation. It is observed that if a rigid ball rolls on an elastic–plastic surface, the characteristics of PEHL lubricant film thickness and pressure distribution are different from those of PEHL in the preliminary cases previously investigated. It is also found that with the increase of rolling cycles, the increment of plastic strain accumulation gradually approaches a stable value or drops down to zero, determined by the applied load and the material hardening properties, eventually causing a groove along the rolling direction. Simulation results for different material hardening properties are also compared to reveal the effect of body materials on the PEHL behaviors.

2014 ◽  
Vol 658 ◽  
pp. 207-212
Author(s):  
Gabriel Popescu

An analytical three-dimensional elastic-plastic over-rolling solution is used to evaluate the plastic strains and residual stresses. Central to this plastic contact formulation is the incremental approach to deal with non-linear material behavior. The Prandtl-Reuss constitutive equations in conjunction with Huber-Mises-Hencky yield criterion and Ramberg-Osgood strain-hardening relationships are applied to describe the plastic behavior of common hardened bearing steel. The model was extended to include the tangential force in the rolling direction, assumed to be proportional to the hertzian contact pressure. Comparisons of three-dimensional pure rolling and rolling/sliding contact results were provided to elucidate the differences in residual stresses and residual profiles in case of kinematic and work-hardening materials.


1991 ◽  
Vol 113 (3) ◽  
pp. 434-441 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper presents an elasto-plastic analysis of the repeated, frictionless, three-dimensional rolling contact similar to the ones produced by the rail-wheel geometry. This paper treats an elliptical contact rolling across a semi-infinite half space. The contact shape and loading: semi-major axis (in the rolling direction), w1 = 8 mm, and semi-minor axis, w2 = 5.88 mm, reflect standard rail and wheel curvatures and a wheel load of 149 KN (33,000 lb). A three-dimensional, elasto-plastic finite element model, developed earlier, is employed together with the elastic-linear-kinematic-hardening-plastic (ELKP) idealization of the cyclic plastic behaviour of a material similar to rail and wheel steels. The calculations present the displacements, the stress-strain distributions, stress-plastic strain histories and the plastic strain ranges in the half-space. The cyclic plasticity approaches a steady state after one contact with further contacts producing open but fully reversed stress-strain hysteresis loops, i.e., plastic shakedown.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
John A. R. Bomidi ◽  
Farshid Sadeghi

In this investigation, a three-dimensional (3D) finite element (FE) model was developed to study subsurface initiated spalling observed in rolling line contact of tribo components such as bearings. An elastic–kinematic hardening–plastic material model is employed to capture the material behavior of bearing steel and is coupled with the continuum damage mechanics (CDM) approach to capture the material degradation due to fatigue. The fatigue damage model employs both stress and accumulated plastic strain based damage evolution laws for fatigue failure initiation and propagation. Failure is modeled by mesh partitioning along unstructured, nonplanar, intergranular paths of the microstructure topology represented by randomly generated Voronoi tessellations. The elastic–plastic model coupled with CDM was used to predict both ratcheting behavior and fatigue damage in heavily loaded contacts. Fatigue damage induced due to the accumulated plastic strains around broken intergranular joints drive the majority of the crack propagation stage, resulting in a lower percentage of life spent in propagation. The 3D FE model was used to determine fatigue life at different contact pressures ranging from 2 to 4.5 GPa for 33 different randomly generated microstructure topology models. The effect of change in contact pressure due to subsurface damage and plastic strain accumulation was also captured by explicitly modeling the rolling contact geometry and the results were compared to those generated assuming a Hertzian pressure profile. The spall shape, fatigue lives, and their dispersion characterized by Weibull slopes obtained from the model correlate well with the previously published experimental results.


Author(s):  
Fanming Meng ◽  
XueFang Cui ◽  
Cao Pu

The elastohydrodynamic lubrication model for the ellipsoid contact considering three-dimensional crack effect is established and solved with an under-relaxation algorithm. In doing so, the fluid field is divided into the two computation domains, in which the usual Reynolds equation and its reduced form are solved for the film pressure with the crack effect. Meanwhile, a fast Fourier transform method is adopted to accelerate the deformation calculation. Simulation model is verified. Numerical results show that the crack can cause jumps for the film pressure and film thickness. Increasing the crack length along the rolling direction and the depth at the crack's open end, and decreasing the crack tip inclined angle all result in an increment in the maximum film pressure. In addition, increasing the crack width can make the film pressure within the crack shift towards both ends of the crack width. The crack close to the contact center brings out a large film pressure.


Author(s):  
Семен Зайдес ◽  
Semen Zaides

Technological potentialities at finish-strengthening processing of low-rigid parts of shaft- and axle types with local ways of machining impact are rather limited. In the paper there are considered new ways for strengthening allowing obtaining qualitative surface strengthening in machine parts at high productivity of an engineering procedure.


2020 ◽  
pp. 79-82
Author(s):  
D.YU. Belan ◽  
G.B. Toder ◽  
K.V. Averkov ◽  
YU.V. Titov

A tool was developed for smoothing the plates of an electric motor collector. An analytical dependence of the roughness parameter of the machined surface on the force applied to the tool is obtained. Keywords traction electric motor, collector, diamond burnishing tool, surface-plastic deformation, repair, roughness. [email protected]


2014 ◽  
Vol 777 ◽  
pp. 213-218 ◽  
Author(s):  
Chandrahas Rathod ◽  
David Wexler ◽  
Vladimir Luzin ◽  
Paul Boyd ◽  
Manicka Dhanasekar

Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.


Sign in / Sign up

Export Citation Format

Share Document