Thermal Non-Newtonian Elastohydrodynamic Lubrication of Rolling Line Contacts

1991 ◽  
Vol 113 (3) ◽  
pp. 481-491 ◽  
Author(s):  
H. Salehizadeh ◽  
N. Saka

The two-dimensional thermal elastohydrodynamic equations were numerically solved for a Ree-Eyring type lubricant under pure rolling conditions. Profiles of lubricant pressure, film thickness, and temperature were obtained for medium to heavy loads and moderate to high rolling speeds. The pressure results generally show a small secondary peak near the outlet, but at the highest load considered no pressure spike is obtained and the pressure profile is almost Hertzian. The film thickness results show an increase in minimum film thickness with increasing rolling speeds, but at a lesser rate than those predicted for a Newtonian fluid under isothermal conditions. It is found that unless the lubricant becomes non-Newtonian in the inlet region, the reduction in minimum film thickness at high rolling speeds is completely due to thermal effect. The lubricant temperature profile and the amount of heat generated and dissipated in the contact region were also calculated. The lubricant temperature reaches a maximum just before the entrance to the Hertz contact region. Both shear and compression heating are found to be important in raising the lubricant temperature in the inlet. As the lubricant enters the Hertz contact zone, the temperature first drops rapidly, because of the rapid heat conduction to the rollers, and then remains almost constant for most of the Hertz contact. Near the exit where the pressure gradients are large, the lubricant temperature drops rapidly below the ambient because of lubricant expansion. The lubricant then heats up rapidly before leaving the contact area as a result of heat generated by shear stresses.

2013 ◽  
Vol 818 ◽  
pp. 77-82
Author(s):  
M. Mongkolwongrojn ◽  
J. Panichakorn ◽  
S. Supawanich ◽  
S. Chutima

This paper presents the analysis of the contact surfaces between a rigid cylinder and a soft plate for viscoelastic material. The contact pressure and deformation of the plate in contact region were determined using finite element technique. Moreover, the characteristics of two surfaces of cylindrical roller and plate under elastohydrodynamic lubrication with nonNewtonian fluid were examined using finite difference technique with full adaptive multigrid method . In this study the simulation of viscoelastic material in contact was under taken to determine the effects of material behaviors on the deformation of plate compared to the elastic materials. The results indicated that the deformation shapes were nonlinearly dependent with the applied loads. Furthermore, the deformation of elastic material would reach a certain value in a period of time whereas the deformation of viscoelastic material was increased inconsistently with time. The film pressure and film thickness profiles in the contact regime were investigated at various loads. The minimum film thickness occurs near the trailing edge of contact region and becomes very small under heavy loads.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Qie-Da Chen ◽  
Wang-Long Li

Soft elastohydrodynamic lubrication (soft-EHL) is an important mechanism in biotribological systems. The soft-EHL has some distinct differences from the traditional hard-EHL, and a systematic analysis factoring in key features of the “softness” appears to be lacking. In this paper, a complete soft-EHL line-contact model is developed. In the model, the half-space approximation is replaced by the finite thickness analysis; the geometrical and material nonlinearity due to finite deformation is factored in; the surface velocities altered by the curvature effect are considered, and the load balance equation is formulated based on the deformed configuration. Solutions are obtained using a finite element method (FEM). The film thickness, pressure distributions, and material deformation are analyzed and discussed under various entraining velocities, elastic modulus, and material thickness of the soft layer. Comparisons are made between soft-EHL and hard-EHL modeling assumptions. The analyses show that the classical EHL modeling is not suitable for soft materials with high loads. The results show that the finite deformation (Green strain) should be considered in soft-EHL analysis. In the contact region, the hard EHL solver overestimates the pressure distribution and underestimates the film thickness and deformation.


Author(s):  
C. J. Hooke ◽  
P Huang

The paper discusses the influence of viscoelasticity in elastohydrodynamic lubrication (EHL). It is shown that viscoelastic effects, particularly in soft materials such as rubber and polymers, may significantly affect the lubrication process. The variations of the pressure and film thickness with viscoelasticity are discussed, as is the internal energy loss in the material. Two effects are present. The first, controlled by the Deborah number based on the Hertz contact width, determines the width of the contact, the overall pressure distribution and the energy loss. The second, controlled by the Deborah number based on the entrainment length, largely determines the thickness of the entrained film and the minimum film thickness.


1986 ◽  
Vol 108 (4) ◽  
pp. 551-556 ◽  
Author(s):  
A. A. Lubrecht ◽  
W. E. ten Napel ◽  
R. Bosma

Film thickness and pressure profiles have been calculated for line contacts at moderate and high loads, using a Multigrid method. Influence of the compressibility of the lubricant on the minimum film thickness and on the pressure spike has been examined. The required computing time is an order of magnitude less than when using the previous methods.


2015 ◽  
Vol 736 ◽  
pp. 57-63
Author(s):  
Panichakorn Jesda ◽  
Wongseedakeaw Khanittha

This paper presents the effect of surface roughness on soft elastohydrodynamic lubrication in circular contact with non-Newtonian lubricant. The time independent modified Reynolds equation, elastic equation and lubricant viscosity equation were formulated for compressible fluid. Perturbation method, Newton-Raphson method, finite different method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various the amplitude of surface roughness, surface speed of sphere, modulus of elasticity and radius of sphere. The simulation results showed that the film thickness in contact region depended on the profile of surface roughness. The minimum film thickness decreased but maximum film pressure and friction coefficient increase when the amplitude of surface roughness and modulus of elasticity increased. For increasing surface speeds, the minimum film thickness and friction coefficient increase but maximum film pressure decreases. When radius of sphere increases, the minimum film thickness increases but maximum film pressure and friction coefficient decrease.


2021 ◽  
pp. 1-21
Author(s):  
Wassim Habchi

Abstract This work presents a comprehensive numerical study of thermal elastohydrodynamic lubrication performance in axially crowned rollers, based on a full-system finite element approach. Axial crowning has always been introduced to finite line contacts, as a mean for improving film thickness. Its influence on friction has often been overlooked though. The current work reveals that axial crowning has a negative influence on friction, increasing it significantly with respect to the reference case of straight rollers. It is shown that, with increased crowning height (or reduced crowning radius), minimum film thickness is increased, but so is friction. Therefore, film thickness enhancement comes at the expense of a deterioration in friction. Besides, achieving sufficient enhancements in minimum film thickness would require using relatively low crowning radii, which would lead to a substantial increase in friction. The frictional increase is traced back to an overall increase in contact pressures and effective contact area within the lubricating conjunction. It is also shown that, when film thickness is the most critical design parameter, the best compromise between enhanced film thickness and deteriorated friction would be to combine axial crowning with roller-end profiling. However, when friction is the most critical design parameter, a simple roller-end profiling would offer the best compromise.


Author(s):  
Niraj Kumar ◽  
Punit Kumar

An elastohydrodynamic lubrication model is proposed for line contacts under pressurized ambient conditions often encountered in hydraulic pumps, submarine machinery and many other submerged systems. It has been demonstrated that the film forming behavior under such conditions is essentially different from that in conventional elastohydrodynamic lubrication contacts. The numerical simulation results are regressed to develop new central and minimum film thickness equations for Newtonian fluids as functions of ambient pressure, speed, load, and material parameters. An alternative approach is also discussed which involves the use of existing film thickness formulas with ambient viscosity and pressure–viscosity coefficient pertaining to the desired pressure range. A film thickness enhancement of more than 100% over conventional elastohydrodynamic lubrication case is observed. This enhancement is shown to be highly sensitive to the pressure–viscosity coefficient. Besides, the effect of shear-thinning behavior is also investigated and it is found to lower the film thickness enhancement, especially at high ambient pressures.


1977 ◽  
Vol 99 (2) ◽  
pp. 264-275 ◽  
Author(s):  
B. J. Hamrock ◽  
D. Dowson

Utilizing the theory developed by the authors in an earlier publication, the influence of the ellipticity parameter, the dimensionless speed, load, and material parameters on minimum film thickness was investigated. The ellipticity parameter was varied from one (a ball on a plate configuration) to eight (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. The dimensionless load parameter was varied over a range of one order of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of paraffinic and naphthenic mineral oils were considered in obtaining the exponent in the dimensionless material parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula given below as H¯min=3.63U0.68G0.49W−0.073(1−e−0.68k) A simplified expression for the ellipticity parameter was found where k=1.03RyRx0.64 Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.


1994 ◽  
Vol 116 (4) ◽  
pp. 733-740 ◽  
Author(s):  
R. Wolff ◽  
A. Kubo

The Newton-Raphson method was applied to solve the thermal EHD lubrication model of line contacts. By accounting for thermal effects in the Newton-Raphson scheme, a very stable numerical approach was obtained. Two models with viscosity constant and variable across the oil film were developed. The results under extremely heavy conditions of dimensionless load W = 52 * 10−5 (pH = 2 GPa) and dimensionless rolling velocity U = 20 * 10−11 are presented. They show that even for pure rolling, but under heavy load and high rolling velocity conditions, the thermal effects significantly reduce the minimum film thickness. The distributions of pressure, film thickness, and temperature for two rolling velocities and various loads are presented. They indicate that under high rolling velocity conditions the thermal effects have a strong influence on a pressure spike.


Sign in / Sign up

Export Citation Format

Share Document