Elastohydrodynamic lubrication of soft viscoelastic materials in line contact

Author(s):  
C. J. Hooke ◽  
P Huang

The paper discusses the influence of viscoelasticity in elastohydrodynamic lubrication (EHL). It is shown that viscoelastic effects, particularly in soft materials such as rubber and polymers, may significantly affect the lubrication process. The variations of the pressure and film thickness with viscoelasticity are discussed, as is the internal energy loss in the material. Two effects are present. The first, controlled by the Deborah number based on the Hertz contact width, determines the width of the contact, the overall pressure distribution and the energy loss. The second, controlled by the Deborah number based on the entrainment length, largely determines the thickness of the entrained film and the minimum film thickness.

1980 ◽  
Vol 22 (4) ◽  
pp. 183-187 ◽  
Author(s):  
C. J. Hooke

It is shown that the film thickness in heavily loaded point contacts can be accurately calculated by comparing the inlet and exit zones of the contact with those of an equivalent line contact. The results become increasingly accurate as the extent of the inlet and exit regions is reduced and in the limit yields an exact solution. Even for moderately loaded contacts in which the inlet zone occupies a substantial part of the contact width the results are in close agreement with existing numerical solutions.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


Author(s):  
V. D’Agostino ◽  
V. Petrone ◽  
A. Senatore

A numerical solution of elastohydrodynamic lubrication (EHL) contact between two rough surface cylinders is presented. In the theoretical approach the free-volume viscosity model is used to describe the piezo-viscous behavior of the lubricant in a Newtonian Elastohydrodynamic line contact [1,2]. Random rough surfaces with Gaussian and exponential statistics have been generated using a method outlined by Garcia and Stoll [3], where an uncorrelated distribution of surface points using a random number generator is convolved with a Gaussian filter to achieve correlation. This convolution is most efficiently performed using the discrete Fast Fourier Transform (FFT) algorithm, which in MATLAB is based on the FFTW library [4]. The maximum pressure and average film thickness are studied at different values of RMS, skewness, kurtosis, autocorrelation function and correlation length. Numerical examples show that skewness and kurtosis have a great effect on the parameters of EHD lubrication. Surface roughness, indeed, tends to reduce the minimum film thickness and it produces pressure fluctuations inside the conjunction which tend to increase the maximum stress. In this way the dynamic stress increases and tends to reduce the fatigue life of the components. It can be seen that the pressures developed in the fluid film in the case of rough surfaces fluctuate with the same frequency of the surface roughness. These pressure ripples correspond to the asperity peaks. This indicates that surface roughness causes very high local contact pressures which may lead to local thinning of the film. A significant reduction has been also observed in the minimum film thickness due to surface roughness.


1991 ◽  
Vol 113 (3) ◽  
pp. 481-491 ◽  
Author(s):  
H. Salehizadeh ◽  
N. Saka

The two-dimensional thermal elastohydrodynamic equations were numerically solved for a Ree-Eyring type lubricant under pure rolling conditions. Profiles of lubricant pressure, film thickness, and temperature were obtained for medium to heavy loads and moderate to high rolling speeds. The pressure results generally show a small secondary peak near the outlet, but at the highest load considered no pressure spike is obtained and the pressure profile is almost Hertzian. The film thickness results show an increase in minimum film thickness with increasing rolling speeds, but at a lesser rate than those predicted for a Newtonian fluid under isothermal conditions. It is found that unless the lubricant becomes non-Newtonian in the inlet region, the reduction in minimum film thickness at high rolling speeds is completely due to thermal effect. The lubricant temperature profile and the amount of heat generated and dissipated in the contact region were also calculated. The lubricant temperature reaches a maximum just before the entrance to the Hertz contact region. Both shear and compression heating are found to be important in raising the lubricant temperature in the inlet. As the lubricant enters the Hertz contact zone, the temperature first drops rapidly, because of the rapid heat conduction to the rollers, and then remains almost constant for most of the Hertz contact. Near the exit where the pressure gradients are large, the lubricant temperature drops rapidly below the ambient because of lubricant expansion. The lubricant then heats up rapidly before leaving the contact area as a result of heat generated by shear stresses.


Author(s):  
M Masjedi ◽  
MM Khonsari

Mixed elastohydrodynamic lubrication of materials with low elastic modulus (soft materials) is investigated. Expressions for prediction of film thickness and the asperity load ratio in soft line-contact elastohydrodynamic lubrication are presented. The traction behavior of soft contact in mixed elastohydrodynamic lubrication regime is also studied in terms of the Stribeck curves.


Author(s):  
Mongkol Mongkolwongrojn ◽  
Khanittha Wongseedakaew ◽  
Francis E. Kennedy

This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.


Author(s):  
SP Chippa ◽  
NV Borse

Numerical analysis is performed to study the transient behavior of EHL finite line contact of a cylindrical roller and flat plane under load impulse. In the present work, effect of pressure on the density and viscosity of lubricant is considered. Finite difference method is used to discretize the governing equations. Multilevel Multi-integration method is used to calculate the elastic deformation. Moreover, Multigrid method is implemented to accelerate the convergence process. Uniqueness of this finite line contact analysis is that it provides an ability to determine the transient behavior of lubricated contact even at the edges of roller. Results show that the load impulse causes squeezing and separation movement within the contact that develops film dimple and pressure ripples at the inlet region, which propagate towards the exit region due to the entrainment motion. It is noticed that the time taken by oil film [Formula: see text] to travel the Hertzian contact width and the time period [Formula: see text] of load impulse decides the behavior of lubricated contacts. Firstly, under a relatively heavy load when the contact width is large enough so that [Formula: see text], then a significant rise in central film thickness (CFT), central minimum film thickness (CMFT) and minimum film thickness (MFT) occurs after the execution of load impulse. Further, under the light load generating a relatively small contact width such that [Formula: see text], then comparatively a small rise in CFT occurs right during the load impulse. Lastly, for a given load if the time period of impulse [Formula: see text] is large enough satisfying the condition [Formula: see text], then a considerable reduction in CFT, CMFT and MFT takes place during the application of load impulse. Moreover, as compare to other cases, for [Formula: see text] the steady state condition is reestablished after a relatively more number of time cycles. It is observed that the maximum pressure and MFT occurs at the contact edges of roller which can be controlled by a proper choice of the radius of end profile [Formula: see text].


1978 ◽  
Vol 100 (2) ◽  
pp. 236-245 ◽  
Author(s):  
Bernard J. Hamrock ◽  
Duncan Dowson

Our earlier studies of elastohydrodynamic lubrication of conjunctions of elliptical form are applied to the particular and interesting situation exhibited by materials of low elastic modulus. By modifying the procedures we outlined in an earlier publication, the influence of the ellipticity parameter k and the dimensionless speed U, load W, and material G parameters on minimum film thickness for these materials has been investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 12 (a configuration approaching a line contact). The dimensionless speed and load parameters were varied by 1 order of magnitude. Seventeen different cases were used to generate the following minimum- and central-film-thickness relations: H˜min=7.43(1−0.85e−0.31k)U0.65W−0.21H˜c=7.32(1−0.72e−0.28k)U0.64W−0.22 Contour plots are presented that illustrate in detail the pressure distribution and film thickness in the conjunction.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Author(s):  
Marius Wolf ◽  
Sergey Solovyev ◽  
Fatemi Arshia

In this paper, analytical equations for the central film thickness in slender elliptic contacts are investigated. A comparison of state-of-the-art formulas with simulation results of a multilevel elastohydrodynamic lubrication solver is conducted and shows considerable deviation. Therefore, a new film thickness formula for slender elliptic contacts with variable ellipticity is derived. It incorporates asymptotic solutions, which results in validity over a large parameter domain. It captures the behaviour of increasing film thickness with increasing load for specific very slender contacts. The new formula proves to be significantly more accurate than current equations. Experimental studies and discussions on minimum film thickness will be presented in a subsequent publication.


Sign in / Sign up

Export Citation Format

Share Document