Thermohydrodynamic Performance of a Tilting Pad Journal Bearing With Spot Lubrication

1991 ◽  
Vol 113 (3) ◽  
pp. 615-619 ◽  
Author(s):  
M. Tanaka

A new method of lubricant feeding is presented for tilting pad journal bearing and its effect on the thermohydrodynamic performance of the bearing is investigated theoretically and experimentally for various operating conditions. The new method can significantly reduce the maximum pad temperature compared with conventional methods, and its effect becomes pronounced with the increase in operating shaft speed. The method is promising for high speed journal pad bearing which is rapidly decreasing a safety margin against seizure due to the dangerously rising maximum pad temperature.

2015 ◽  
Vol 67 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Pengju Li ◽  
Yongsheng Zhu ◽  
Youyun Zhang ◽  
Pengfei Yue

Purpose – This paper aims to present the theoretical and experimental investigation of the temperature of high speed and heavy haul tilting pad journal bearing. Design/methodology/approach – The bearing is 152.15 mm in diameter with three slenderness ratios (L/D) and three clearance ratios. The equations that govern the flow and energy transport are solved by the finite difference method, and the experimental tests are conducted in a test rig of high speed and heavy haul tilting pad journal bearing. The shaft speed ranges from 3,000 to 16,500 r/min (the highest linear-velocity equals 131.4 m/s), and the three static loads are 10, 20 and 30 KN. Findings – The comparisons between numerical results and experimental results show better correlations. It is shown in the theoretical and experimental results that the temperature increases with static load and shaft speed and decreases with clearance ratio and L/D. Originality/value – The theoretical models presented in this paper can be used to predict the temperature of tilting pad journal bearing when the shaft’s linear velocity is up to 130 m/s.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
Maurice L. Adams ◽  
Michael A. Laurich

It has recently been shown that high-speed grinding can be applied to the finishing of ceramics with considerable improvements in throughput and quality. This will require new high-speed high-power centerless grinding spindles (7,000 RPM, 50 HP), with high-stiffness of three hundred and fifty million Newtons/meter (2 million lb/in). To meet these requirements a novel inside-out, three-pad, pivoting-pad oil-fed hydrodynamic journal bearing has been devised, built and tested. One of the three pad’s pivot point is supported by a hydraulically-actuated radial-motion loading piston. This provides real-time controllable preload to all three bearing pads, thereby controlling bearing stiffness, providing less-stiff spindle bearings for initial rough grinding and very high stiffness spindle bearings for precision finish grinding. Extensive bearing test data compare favorably with theoretically predicted bearing performance.


Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


1999 ◽  
Vol 121 (3) ◽  
pp. 517-522 ◽  
Author(s):  
Hyun Cheon Ha ◽  
Seong Heon Yang

An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test hearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters, as follows: 1) excitation frequency ratio in the x-axis direction νx = 0.5, 2) excitation frequency ratio in the y-axis direction νy = 0.6, 0.7, 0.8, 0.9. The magnitude of the excitation force is controlled to make sure that the test hearing has a linear behavior during the test. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation, frequency has quite a little effect on both stiffness and damping coefficients. The stiffness coefficients of the five-pad tilting pad journal bearing slightly decrease as the excitation frequency ratio increases, while the damping coefficients slightly increase with excitation frequency ratio, especially in the case of lower speed and higher load. Both direct stiffness and damping coefficients in the direction of bearing load decrease with an increase of shaft speed, but increase with the bearing load.


1981 ◽  
Vol 23 (3) ◽  
pp. 131-141
Author(s):  
M. Malik ◽  
R. Sinhasan ◽  
D. V. Singh

The rolling-pad journal bearing is a kinematic variation of the well-known tilting-pad journal bearing. In rolling-pad bearings, the pads, instead of tilting about fixed pivots, roll at their back surfaces on the inside surface of a common sleeve to accommodate changes in the operating conditions of the bearing. This paper presents a comparison of the theoretical performance characteristics of rolling-pad journal bearings with those of tilting-pad journal bearings. The comparative study indicates that the dynamic performance characteristics of the rolling-pad bearing configuration are superior to those of the tilting-pad bearing.


Author(s):  
Nico Buchhorn ◽  
Sebastian Kukla ◽  
Beate Bender ◽  
Marc Neumann

Large turbine bearings are usually equipped with hydrostatic jacking mechanisms to separate bearing and shaft during transient start-stop procedures. They are turned off once hydrodynamic operation is reached. In some cases, under severe operating conditions, the hydrostatic oil supply is kept running although the rotor already runs in full speed. The supplied amount of jacking oil is very small compared to the regular oil supply. However, experimental data of a large tilting-pad bearing shows that this hybrid operation has a considerable impact on the load carrying capacity in terms of lower pad temperature and larger film thickness. In this paper, a theoretical investigation to analyse the effect of increased load carrying capacity of a large tilting-pad journal bearing in hybrid operation is presented. The increase is driven by three different aspects: 1) hydrostatic pressure component, 2) increase in lubricant viscosity due to the injection of cold oil, 3) decrease of temperature gradients and thus thermal pad deformation. Subject of the approach is a ø500 mm five-pad, rocker-pivot tilting-pad journal bearing in flooded lubrication mode. The experiments are carried out on the Bochum test rig for large turbine bearings. The theoretical analyses are performed with a simulation code solving the Reynolds and energy equations for the oil film and calculating the thermomechanical pad deformations simultaneously. By considering each of the three above aspects separately and in combination, their share of load increase can be assessed individually. Contrary to expectations, the results indicate that the increase is not mostly based on the hydrostatic pressure component. Instead, the advantageously decreased pad deformations make the largest contribution to the increased load carrying capacity while the alteration in viscosity shows the least impact.


Author(s):  
Stephen L. Edney ◽  
Gregory B. Heitland ◽  
Scan M. DeCamillo

Testing and analysis of a profiled leading edge groove tilting pad journal bearing developed for light load operation is described. This bearing was designed for a generic, small, high speed steam turbine operating at projected loads of less than 25 psi (172.4 kPa) and journal surface speeds to 400 ft/s (122 m/s). On the second turbine application, a rotor instability was experienced with the oil flowrate reduced to optimize bearing steady state performance. This instability was eliminated by machining a taper on the exit side of the feed groove on each pad. At the reduced flowrate, the profiled groove bearing greatly improved the operating characteristics of the rotor system by reducing vibration amplitudes and stabilizing operation at speed. This paper is divided into two sections. The first section compares the rotordynamics analysis with test data that shows improved unbalance response and operating stability with the profiled groove bearing. The second section provides original insight of the effect of the profiled geometry on the bearing flow field using computational fluid dynamics models.


Sign in / Sign up

Export Citation Format

Share Document