Three-Dimensional Flowfields Inside a Transonic Compressor With Swept Blades

1991 ◽  
Vol 113 (2) ◽  
pp. 241-250 ◽  
Author(s):  
C. Hah ◽  
A. J. Wennerstrom

The concept of swept blades for a transonic or supersonic compressor was reconsidered by Wennerstrom in the early 1980s. Several transonic rotors designed with swept blades have shown very good aerodynamic efficiency. The improved performance of the rotor is believed to be due to reduced shock strength near the shroud and better distribution of secondary flows. A three-dimensional flowfield inside a transonic rotor with swept blades is analyzed in detail experimentally and numerically. A Reynolds-averaged Navier–Stokes equation is solved for the flow inside the rotor. The numerical solution is based on a high-order upwinding relaxation scheme, and a two-equation turbulence model with a low Reynolds number modification is used for the turbulence modeling. To predict flows near the shroud properly, the tip-clearance flow also must be properly calculated. The numerical results at three different operating conditions agree well with the available experimental data and reveal various interesting aspects of shock structure inside the rotor.

Author(s):  
C. Hah ◽  
A. J. Wennerstrom

The concept of swept blades for a transonic or supersonic compressor was reconsidered by Wennerstrom in the early 1980s. Several transonic rotors designed with swept blades have shown very good aerodynamic efficiency. The improved performance of the rotor is believed to be due to reduced shock strength near the shroud and better distribution of secondary flows. A three-dimensional flowfield inside a transonic rotor with swept blades is analyzed in detail experimentally and numerically. A Reynolds-averaged Navier-Stokes equation is solved for the flow inside the rotor. The numerical solution is based on a high-order upwinding relaxation scheme, and a two-equation turbulence model with a low Reynolds number modification is used for the turbulence modeling. To properly predict flows near the shroud, the tip-clearance flow also must be properly calculated. The numerical results at three different operating conditions agree well with the available experimental data and reveal various interesting aspects of shock structure inside the rotor.


1986 ◽  
Vol 108 (1) ◽  
pp. 15-21 ◽  
Author(s):  
C. Hah

The current study is aimed at developing and appraising a numerical method for the development of endwall boundary layers through tip-clearances and their effect on the performance of an isolated compressor rotor. The Reynolds-averaged Navier-Stokes equation is solved for the entire flow field in elliptic form. The relative flow is computed on the generalized coordinates fixed on the rotor. Comparison between the numerical results and experimental data indicates that the complex three-dimensional viscous flow phenomena inside the tip region are properly predicted.


1996 ◽  
Vol 118 (2) ◽  
pp. 230-239 ◽  
Author(s):  
W. W. Copenhaver ◽  
E. R. Mayhew ◽  
C. Hah ◽  
A. R. Wadia

An experimental and numerical investigation of detailed tip clearance flow structures and their effects on the aerodynamic performance of a modern low-aspect-ratio, high-throughflow, axial transonic fan is presented. Rotor flow fields were investigated at two clearance levels experimentally, at tip clearance to tip blade chord ratios of 0.27 and 1.87 percent, and at four clearance levels numerically, at ratios of zero, 0.27, 1.0, and 1.87 percent. The numerical method seems to calculate the rotor aerodynamics well, with some disagreement in loss calculation, which might be improved with improved turbulence modeling and a further refined grid. Both the experimental and the numerical results indicate that the performance of this class of rotors is dominated by the tip clearance flows. Rotor efficiency drops six points when the tip clearance is increased from 0.27 to 1.87 percent, and flow range decreases about 30 percent. No optimum clearance size for the present rotor was indicated. Most of the efficiency change occurs near the tip section, with the interaction between the tip clearance flow and the passage shock becoming much stronger when the tip clearance is increased. In all cases, the shock structure was three dimensional and swept, with the shock becoming normal to the endwall near the shroud.


Author(s):  
William W. Copenhaver ◽  
Ellen R. Mayhew ◽  
Chunill Hah

An experimental and numerical investigation of detailed tip clearance flow structures and their effects on the aerodynamic performance of a modern low-aspect-ratio, high-through-flow, axial transonic fan is presented. Rotor flow fields were investigated at two clearance levels experimentally, at tip clearance to tip blade chord ratios of 0.27 and 1.87 percent, and at four clearance levels numerically, at ratios of zero, 0.27, 1.0, and 1.87 percent. The numerical method seems to calculate the rotor aerodynamics well, with some disagreement in loss calculation which might be improved with improved turbulence modeling and a further refined grid. Both the experimental and the numerical results indicate that the performance of this class of rotors is dominated by the tip clearance flows. Rotor efficiency drops six points when the tip clearance is increased from 0.27 to 1.87 percent, and flow range decreases about 30 percent. No optimum clearance size for the present rotor was indicated. Most of the efficiency change occurs near the tip section, with the interaction between the tip clearance flow and the passage shock becoming much stronger when the tip clearance is increased. In all cases, the shock structure was three-dimensional and swept, with the shock becoming normal to the endwall near the shroud.


Author(s):  
Daniel J. Dorney ◽  
Lisa W. Griffin ◽  
Frank W. Huber

Flow unsteadiness is a major factor in turbine performance and durability. This is especially true if the turbine is a high work design, compact, transonic, supersonic, counter rotating, or uses a dense drive gas. The vast majority of modern rocket turbine designs fall into these categories. In this study a parallelized unsteady three-dimensional Navier-Stokes analysis has been used to study the effects of tip clearance on the transient and time-averaged flow fields in a supersonic turbine. The predicted results indicate improved performance in the simulation including tip clearance. The sources of the performance gains were: 1) reduced endwall secondary flows due to decreased blade loading near the tip, 2) a weakened shock system in the case with tip clearance, and 3) the fact that the reduction in the shock losses were greater than the losses introduced by tip clearance.


Author(s):  
José Ramón Serrano ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern

Tip leakage loss characterization and modeling plays an important role in small size radial turbine research. The momentum of the flow passing through the tip gap is highly related with the tip leakage losses. The ratio of fluid momentum driven by the pressure gradient between suction side and pressure side and the fluid momentum caused by the shroud friction has been widely used to analyze and to compare different sized tip clearances. However, the commonly used number for building this momentum ratio lacks some variables, as the blade tip geometry data and the viscosity of the used fluid. To allow the comparison between different sized turbocharger turbine tip gaps, work has been put into finding a consistent characterization of radial tip clearance flow. Therefore, a non-dimensional number has been derived from the Navier Stokes Equation. This number can be calculated like the original ratio over the chord length. Using the results of wide range CFD data, the novel tip leakage number has been compared with the traditional and widely used ratio. Furthermore, the novel tip leakage number can be separated into three different non-dimensional factors. First, a factor dependent on the radial dimensions of the tip gap has been found. Second, a factor defined by the viscosity, the blade loading, and the tip width has been identified. Finally, a factor that defines the coupling between both flow phenomena. These factors can further be used to filter the tip gap flow, obtained by CFD, with the influence of friction driven and pressure driven momentum flow.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
Kofi Freeman K. Adane ◽  
Mark F. Tachie

Three-dimensional laminar lid-driven and wall jet flows of various shear-thinning non-Newtonian and Newtonian fluids were numerically investigated. The complete nonlinear incompressible Navier-Stokes equation was solved using a collocated finite-volume based in-house CFD code. From the results, velocity profiles at several locations, jet spread rates, secondary flows and vorticity distributions were used to provide insight into the characteristics of three-dimensional laminar canonical flows of shear-thinning non-Newtonian and Newtonian fluids.


Sign in / Sign up

Export Citation Format

Share Document