A Transfer Matrix Technique for Evaluating the Natural Frequencies and Critical Speeds of a Rotor With Multiple Flexible Disks

1992 ◽  
Vol 114 (2) ◽  
pp. 242-248 ◽  
Author(s):  
F. Wu ◽  
G. T. Flowers

The influence of disk flexibility on the rotordynamical behavior of turbomachinery is a topic that is of some concern to designers and analysts of such equipment. Research in this area has indicated that disk flexibility may significantly alter the dynamical behavior of a rotor system. This research effort is concerned with developing a procedure to account for disk flexibility which can readily be used for investigating how such effects might influence the natural frequencies and critical speeds of practical rotor systems. A transfer matrix procedure is developed in this work in which the disk flexibility effects are accounted for by means of additional terms included in the transfer matrix formulation. In this way the efficiency and practicality of the transfer matrix method is retained. To demonstrate this technique, a simple rotor system is studied for the effect of disk flexibility and the results discussed.

Author(s):  
Shuang Huang ◽  
Xinfu Chi ◽  
Yang Xu ◽  
Yize Sun

Focusing on tufting machine type DHUN801D-400, the complex dynamic model of coupling shaft system is built by using Riccati whole transfer matrix method, and the natural frequencies and mode shapes are analyzed. First, the components of coupling shafts system in tufting machine are introduced. Second, the structures of coupling shafts system are discretized and simplified. Third, the transfer matrix is constructed, the model is solved by using Riccati whole transfer matrix method, and then natural frequencies and mode shapes are obtained. Finally, the experimental results are quoted to demonstrate the applicability of the model. The results indicate that the Riccati whole transfer matrix method is well applicable for modeling the dynamics of complex multi-rotor systems.


Author(s):  
Yan Litang

A substructure transfer matrix method for the dynamic analysis of multi-Rotor systems and complex composite systems is presented. When calculating, the rotor system should be decomposed into several single rotor shafts (substructures). Corresponding unknown external loads and deflections are applied to the separated surfaces, rigid support sections and ball joint sections respectively to replace the original connections. According to the connective and boundary conditions of the whole rotor system, a system of equations is established, from which the frequency equation results. The calculating formulas of vibration modes and of unbalanced response will be easily formed by linear combination method. All computations are performed with the transfer matrix method. This method is intelligible, readily programmed and much simpler than the current transfer matrix method and modal synthesis method.


Author(s):  
K. D. Gupta ◽  
K. Gupta ◽  
K. Athre

This paper presents a general formulation for the stability problem of a linear model of dual rotor system with intershaft bearing(s) employing an ‘extended’ transfer matrix method [9] using complex variables. The stability criterion employed is essentially an extension of leonhard’s stability criterion. An alternative concept of ‘margin of stability’ has been suggested. In contrast to other methods, the present formulation maintains the integrity of dual rotor system in totality, by considering exact junction conditions at intershaft bearing. And it is felt that it would prove to be an potential method for analyzing the stability of complex rotor systems.


Author(s):  
Siu-Tong Choi ◽  
Sheng-Yang Mau

Abstract In this paper, an analytical study of the dynamic characteristics of geared rotor-bearing systems by the transfer matrix method is presented. Rotating shafts are modeled as Timoshenko beam with shear deformation and gyroscopic effects taken into account. The gear mesh is modeled as a pair of rigid disks connected by a spring-damper set and a transmission-error exciter. The transfer matrix of a gear mesh is developed. The coupling motions of the lateral and torsional vibration are studied. In free vibration analysis of geared rotor systems, natural frequencies and corresponding mode shapes, and the whirl frequencies under different spin speeds are determined. Effects of bearing stiffness, isotropic and orthotropic bearings, pressure angle of the gear mesh are studied. In steady-state vibration analysis, responses due to the excitation of mass unbalance and the transmission error are studied. Parametric characteristics of geared rotor systems are discussed.


Author(s):  
Fangsheng Wu ◽  
George T. Flowers

Abstract Modern turbomachinery is used to provide power for a wide range of applications, from steam turbines for electrical power plants to the turbopumps used in the Space Shuttle Main Engine. Such devices are subject to a variety of dynamical problems, including vibration, rotordynamical instability, and shaft whirl. In order to properly design and evaluate the performance and stability of turbomachinery, It is important that appropriate analytical tools be available that allow for the study of potentially important dynamical effects. This research effort is concerned with developing a procedure to account for disk flexibility which can readily be used for investigating how such effects might influence the natural frequencies and critical speeds of practical rotor systems. In the present work, a transfer matrix procedure is developed in which the disk flexibility effects are accounted for by means of additional terms included in the transfer matrix formulation. In this development, the shaft is treated as a discrete system while the disk is modelled as a continuous system using the governing partial differential equation. Based on this governing equation, an equivalent inertial moment Mk*, which is the generalized dynamic force coupling between shaft and disk, is then derived. Analysis shows that only the disk modes of one nodal diameter contribute to the inertial moment, Mk*, and thus influence the natural frequencies of the rotor system. To determine the Mk*, the modal expansion method is employed and the governing partial differential equation of the disk is transformed to a set of decoupled forced vibration equations in the generalized coordinates. The Mk* are then calculated in terms of modal shapes, natural frequencies, and material and geometric parameters which can be found in the literature or can be obtained from experiments. Finally the Mk* are incorporated into the point transfer matrix. By so doing, the properties of quick computational speed and ease of use are retained and the complexity of solving partial differential equations is avoided. This allows the present procedure to be easily applied to practical engineering problems. This is especially true for multiple flexible disk rotor systems. As an example, three different cases for a simplified model of the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbo-Pump (HPOTP) rotor have been studied using this procedure. Some of the more interesting results obtained in this example study are enumerated below. 1.) Disk flexibility can introduce additional natural frequency(s) to a rotor system. 2.) Disk flexibility can cause shifting of some of the natural frequencies. 3.) As disk flexibility is increased, lower natural frequencies of the rotor system will be influenced. 4.) At certain rotor speeds, disk flexibility may cause the disappearance of a natural frequency. 5.) The axial position of the disk on the rotor shaft has a significant effect on the degree of this influence.


2012 ◽  
Vol 19 (6) ◽  
pp. 1167-1180 ◽  
Author(s):  
A.M. Yu ◽  
Y. Hao

Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types) helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45) in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Xu ◽  
Guanlu Jiang

The dynamic response magnitudes of retaining walls under seismic loadings, such as earthquakes, are influenced by their natural frequencies. Resonances can occur when the natural frequency of a wall is close to the loading frequency, which could result in serious damage or collapse. Although field percussion tests are usually used to study the health state of retaining walls, they are complicated and time consuming. A natural frequency equation for retaining walls with tapered wall facings is established in this paper using the transfer matrix method (TMM). The proposed method is validated against the results of numerical simulations and field tests. Results show that fundamental frequencies decrease gradually with wall height; soil elastic modulus exerts a great influence on the fundamental frequency for walls with smaller facing stiffness; fundamental frequencies are smaller for a hinged toe than a fixed toe condition, and this difference is smaller in taller walls.


1994 ◽  
Vol 116 (1) ◽  
pp. 16-25 ◽  
Author(s):  
A. Kayran ◽  
J. R. Vinson ◽  
E. Selcuk Ardic

A methodology is presented for the calculation of the natural frequencies of orthotropic axisymmetrically loaded shells of revolution including the effect of transverse shear deformation. The fundamental system of equations governing the free vibration of the stress-free shells of revolution are modified such that the initial stresses due to the axisymmetric loading are incorporated into the analysis. The linear equations on the vibration about the deformed state are solved by using the transfer matrix method which makes use of the multisegment numerical integration technique. This method is commonly known as frequency trial method. The solution for the initial stresses due to axisymmetric loading is omitted; since the application of the transfer matrix method, making use of multisegment numerical integration technique for both linear and nonlinear equations are available in the literature. The method is verified by applying it to the solution of the natural frequencies of spinning disks, for which exact solutions exist in the literature, and a deep paraboloid for which approximate solutions exist. The governing equations for a shell of revolution are used to approximate circular disks by decreasing the curvature of the shell of revolution to very low values, and good agreement is seen between the results of the present method and the exact solution for spinning disks and the approximate solution for a deep paraboloid.


Sign in / Sign up

Export Citation Format

Share Document