inertial moment
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Riska Analia ◽  
Jan Hong ◽  
Joshua Mangkey ◽  
Susanto ◽  
Daniel Pamungkas ◽  
...  

The development of an assistive robot to assist human beings in walking normally is a difficult task. One of the main challenges lies in understanding the intention to walk, as an initial phase before walking commences. In this work, we classify the human gait cycle based on data from an inertial moment unit sensor and information on the angle of the hip joint and use the results as initial signals to produce a suitable assistive torque for a lower limb exoskeleton. A neural network module is used as a prediction module to identify the intention to walk based on the gait cycle. A decision tree method is implemented in our system to generate the assistive torque, and a prediction of the human gait cycle is used as a reference signal. Real-time experiments are carried out to verify the performance of the proposed method, which can differentiate between various types of walking. The results show that the proposed method is able to predict the intention to walk as an initial phase and is also able to provide an assistive torque based on the information predicted for this phase.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Jing Geng ◽  
Vigen Arakelian ◽  
Damien Chablat ◽  
Philippe Lemoine

For fast-moving robot systems, the fluctuating dynamic loads transmitted to the supporting frame can excite the base and cause noise, wear, and fatigue of mechanical components. By reducing the shaking force completely, the dynamic characteristics of the robot system can be improved. However, the complete inertial force and inertial moment balancing can only be achieved by adding extra counterweight and counter-rotation systems, which largely increase the total mass, overall size, and complexity of robots. In order to avoid these inconveniences, an approach based on the optimal motion control of the center of mass is applied for the shaking force balancing of the robot Orthoglide. The application of the “bang–bang” motion profile on the common center of mass allows a considerable reduction of the acceleration of the total mass center, which results in the reduction of the shaking force. With the proposed method, the shaking force balancing of the Orthoglide is carried out, taking into account the varying payload. Note that such a solution by purely mechanical methods is complex and practically inapplicable for industrial robots. The simulations in ADAMS software validate the efficiency of the suggested approach.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199295
Author(s):  
Ziqiang Zhang ◽  
Qi Yang ◽  
Xingkun Liu ◽  
Chuanzhong Zhang ◽  
Jinnong Liao

One degree-of-freedom (DOF) jumping leg has the advantages of simple control and high stiffness, and it has been widely used in bioinspired jumping robots. Compared with four-bar jumping leg, six-bar jumping leg mechanism can make the robot achieve more abundant motion rules. However, the differences among different configurations have not been analyzed, and the choice of configurations lacks basis. In this study, five Watt-type six-bar jumping leg mechanisms were selected as research objects according to the different selection of equivalent tibia, femur and trunk link, and a method for determining the dimension of the jumping leg was proposed based on the movement law of jumping leg of locust in take-off phase. On this basis, kinematics indices (sensitivity of take-off direction angle and trunk attitude angle), dynamics indices (velocity loss, acceleration fluctuation, and mean and variance of total inertial moment) and structure index (distribution of center of mass) were established, and the differences of different configurations were compared and analyzed in detail. Finally, according to the principal component analysis method, the optimal selection method for different configurations was proposed. This study provides a reference for the design of one DOF bioinspired mechanism.


The paper presents the mathematical model and the technique of computer imitation of a vehicle movement on bend. Research of roadability and stability of the truck and the schedules illustrating change of characteristics of the steered movement have been obtained. The critical modes of the movement causing separation of wheels from road surface and side slippage have been defined. Speed limit of the steered movement on trajectory of the set curvature have been determined. Keywords vehicle, wheel, cross and longitudinal reactions of the road, inertia force, inertial moment, trajectory of a vehicle movement, angles of withdrawal of wheels, spring weight angle of heel, side slippage, vehicle drift


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 612 ◽  
Author(s):  
Jingui Wu ◽  
Baohua Zhang ◽  
Jun Zhou ◽  
Yingjun Xiong ◽  
Baoxing Gu ◽  
...  

Automatic recognition of ripening tomatoes is a main hurdle precluding the replacement of manual labour by robotic harvesting. In this paper, we present a novel automatic algorithm for recognition of ripening tomatoes using an improved method that combines multiple features, feature analysis and selection, a weighted relevance vector machine (RVM) classifier, and a bi-layer classification strategy. The algorithm operates using a two-layer strategy. The first-layer classification strategy aims to identify tomato-containing regions in images using the colour difference information. The second classification strategy is based on a classifier that is trained on multi-medium features. In our proposed algorithm, to simplify the calculation and to improve the recognition efficiency, the processed images are divided into 9 × 9 pixel blocks, and these blocks, rather than single pixels, are considered as the basic units in the classification task. Six colour-related features, namely the Red (R), Green (G), Blue (B), Hue (H), Saturation (S) and Intensity (I) components, respectively, colour components, and five textural features (entropy, energy, correlation, inertial moment and local smoothing) were extracted from pixel blocks. Relevant features and their weights were analysed using the iterative RELIEF (I-RELIEF) algorithm. The image blocks were classified into different categories using a weighted RVM classifier based on the selected relevant features. The final results of tomato recognition were determined by combining the block classification results and the bi-layer classification strategy. The algorithm demonstrated the detection accuracy of 94.90% on 120 images, this suggests that the proposed algorithm is effective and suitable for tomato detection


2017 ◽  
Vol 6 (3) ◽  
pp. 71 ◽  
Author(s):  
Claudio Parente ◽  
Massimiliano Pepe

The purpose of this paper is to investigate the impact of weights in pan-sharpening methods applied to satellite images. Indeed, different data sets of weights have been considered and compared in the IHS and Brovey methods. The first dataset contains the same weight for each band while the second takes in account the weighs obtained by spectral radiance response; these two data sets are most common in pan-sharpening application. The third data set is resulting by a new method. It consists to compute the inertial moment of first order of each band taking in account the spectral response. For testing the impact of the weights of the different data sets, WorlView-3 satellite images have been considered. In particular, two different scenes (the first in urban landscape, the latter in rural landscape) have been investigated. The quality of pan-sharpened images has been analysed by three different quality indexes: Root mean square error (RMSE), Relative average spectral error (RASE) and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS).


Author(s):  
Yury Zhuravlev ◽  
Andrey Perminov ◽  
Yury Lukyanov ◽  
Sergey Tikhonov ◽  
Alexander Ilyin ◽  
...  

The article discusses a rotory-vane heat engine with a lever-cam mechanism motion conversion (an engine may be an internal combustion or external combustion). The output shaft of the engine adds drive torque from the working fluid pressure forces acting on the blade and the inertial moment of the forces of inertia of engine components. The mechanical strength of the motor is dependent on the magnitude and phase of these two torque. The purpose of the article is to determine the conditions under which mechanical strength is minimized.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Binghui Wang ◽  
Zhihua Wang ◽  
Xi Zuo

The major goal of this paper is to address the derivation of the frequency equation of flexural vibrating cantilever beam considering the bending moment generated by an additional mass at the free end of beam, not just the shear force. It is a transcendental equation with two unambiguous physical meaning parameters. And the influence of the two parameters on the characteristics of frequency and shape mode was made. The results show that the inertial moment of the mass has the significant effect on the natural frequency and the shape mode. And it is more reasonable using this frequency equation to analyze vibration and measure modulus.


2015 ◽  
Vol 773-774 ◽  
pp. 63-68
Author(s):  
Muhammad Zaim ◽  
Elmi Abu Bakar ◽  
Low Hock Soon

This paper presents a study on quadrotor using PID controller together with the application of Kalman Filter. Purpose of this project is to study effect of separate Kalman filter in overcoming the signal noise and gyro drift in the attitude sensors and simulate the PID controller which controlling the quadrotor dynamics through damping the vehicle oscillation. In this research, simulation of Kalman Filter in filtering the noise from the inertial moment unit (IMU) and PID controller in damping on unstable oscillation has been conducted to observe the performance of the quadrotor.


Sign in / Sign up

Export Citation Format

Share Document