Benchmark Experimental Data for Fully Stalled Wide-Angled Diffusers

2008 ◽  
Vol 130 (10) ◽  
Author(s):  
K Kibicho ◽  
A. T. Sayers

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Separated diffuser flows provide a classical case of pressure driven flow separation. Such flows present a very serious challenge to fluid dynamics modelers. This paper provides a data bank contribution for the streamwise mean velocity field and pressure recovery data in wide-angled diffusers. Turbulent mean flow measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centerline velocity for diffusers whose divergence angles were between 30 deg and 50 deg. The results presented provide a reliable validation data bank for computational fluid dynamics studies for pressure driven flow separation studies.

2006 ◽  
Vol 21 (6) ◽  
pp. 379-382 ◽  
Author(s):  
Michael Blaivas ◽  
Stephen Shiver ◽  
Matthew Lyon ◽  
Srikar Adhikari

AbstractIntroduction:Exsanguination from a femoral artery wound can occur in sec-onds and may be encountered more often due to increased use of body armor. Some military physicians teach compression of the distal abdominal aorta (Abdominal Aorta) with a knee or a fist as a temporizing measure.Objective:The objective of this study was to evaluate if complete collapse of the Abdominal Aorta was feasible and with what weight it occurs.Methods:This was a prospective, interventional study at a Level-I, academ-ic, urban, emergency department with an annual census of 80,000 patients. Written, informed consent was obtained from nine male volunteers after Institutional Research Board approval. Any patient who presented with abdominal pain or had undergone previous abdominal surgery was excluded from the study. Subjects were placed supine on the floor to simulate an injured soldier. Various dumbbells of increasing weight were placed over the distal Abdominal Aorta, and pulsed-wave Doppler measurements were taken at the right common femoral artery (CFA). Dumbbells were placed on top of a tightly bundled towel roughly the surface area of an adult knee. Flow measurements at the CFA were taken at increments of 20 pounds. This was repeated with weight over the proximal right artery iliac and distal right iliac artery to eval- uate alternate sites. Descriptive statistics were utilized to evaluate the data.Results:The mean velocity through the CFA was 75.8 cm/ sec at 0 pounds. Compression of the Abdominal Aorta ranging 80 to 140 pounds resulted in no flow in the CFA. A steady decrease in mean flow velocity was seen starting with 20 pounds. Flow velocity decreased more rapidly with compression of the prox- imal right iliac artery, and stopped in all nine volunteers by 120 pounds of pressure. For all nine volunteers, up to 80 pounds of pressure over the distal iliac artery failed to decrease CFA flow velocity, and no subject was able to tolerate more weight at that location.Conclusion:Flow to the CFA can be stopped completely with pressure over the distal Abdominal Aorta or proximal iliac artery in catastrophic wounds. Compression over the proximal iliac artery worked best, but a first responder still may need to apply upward of 120 pounds of pressure to stop exsanguination.


2016 ◽  
Vol 796 ◽  
pp. 257-284 ◽  
Author(s):  
Christian J. Kähler ◽  
Sven Scharnowski ◽  
Christian Cierpka

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.


Author(s):  
C. Barbier ◽  
E. Dominguez-Ontiveros

A liquid mercury target is used at Oak Ridge National Laboratory’s (ORNL [1]) Spallation Neutron Source (SNS [2]) to generate neutrons. The mercury is flowing in a stainless steel containment vessel for neutron spallation, but also to cool the vessel itself. Computational Fluid Dynamics (CFD) simulations have been used to estimate the temperature and pressure fields needed for the thermal stress analysis. Because of the geometry complexity, the high turbulence number, and the computational time requirements, generating a quality mesh that can accurately capture the flow and heat transfer has always been a challenge. However, with today’s High Performance Computing (HPC) advances, larger and larger meshes can now be used and better accuracy can be achieved. In this study, two meshing methods were used for the SNS jet-flow target: automatic tetrahedral method (ANSYS meshing) and manual hexahedral meshing (ICEM-CFD). Both methods are compared in terms of quality, size, ease of generation, convergence, and user-friendliness. Both meshes were used with ANSYS-CFX to simulate the steady, Newtonian, single phase, isothermal, incompressible and turbulent flow in the target. The Shear Stress Transport (SST) k-ω model developed by Menter [3] was used for turbulence modeling. The accuracy of the CFD simulations are tested against experimental data presented in the current paper. An in-depth series of Particle Image Velocimetry (PIV) measurements performed on a “visual jet-flow target”, an acrylic replica target running with water, are presented in the paper. Since flow measurements in mercury are difficult, a water loop was built to investigate the flow in the target and a potential gas injection in the flow to mitigate the pressure wave [4]. A PIV system on a precise translation stage was setup on the water loop to perform detailed and accurate PIV measurements. Mean flow velocity fields were used to validate the CFD simulations. The paper concludes on the choice for mesh generation for future target analysis, and the path forward for CFD simulations for the future SNS targets.


Author(s):  
R. Schodl

Similar to the Doppler technique the principle of this method is also based on light scattered by small particles as they are normally contained in every fluid. Two light beams (laser beams are not necessary) are focused in two very small light spots in the measuring volume. Particles passing both the spots emit two light pulses which can be detected by a photomultiplier. From the time interval between these two pulses and from the known spots distance the flow velocity can be calculated. A statistical analysis of many signals, taken at the same treasuring point, allows calculation of the mean velocity, the mean flow angle and the turbulence degree of the velocity components in a plane normal to the beam axis. Due to the light intensity of the light spots (102 to 103 times higher than the intensity in a Doppler probe volume under similar conditions) a sufficient signal-to-noise ratio is achieved so that velocity measurements even in unseeded air flows are possible up to 500 m/s in backscattering by using a 5 mW laser. Tests were carried out in a supersonic wind tunnel up to a Mach number of 2.2. For measurements in the rotor blade channels of turbomachines a specific trigger optic has been installed.


2010 ◽  
Vol 652 ◽  
pp. 489-499 ◽  
Author(s):  
A. V. BELYAEV ◽  
O. I. VINOGRADOVA

A super-hydrophobic array of grooves containing trapped gas (stripes) has the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused on idealized cases of stick-perfect slip stripes. Here, we analyse the experimentally more relevant situation of a pressure-driven flow past striped slip-stick surfaces with arbitrary local slip at the gas sectors. We derive approximate formulas for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in a good agreement with the exact numerical solution for any surface slip fraction. By representing eigenvalues of the slip length tensor, we obtain the effective slip for any orientation of stripes with respect to the mean flow. Our results imply that flow past stripes is controlled by the ratio of the local slip length to texture size. In the case of a large (compared to the texture period) slip at the gas areas, surface anisotropy leads to a tensorial effective slip, by attaining the values predicted earlier for a perfect local slip. Both effective slip lengths and anisotropy of the flow decrease when local slip becomes of the order of texture period. In the case of a small slip, we predict simple surface-averaged isotropic flows (independent of orientation).


An experimental investigation has been made of turbulent boundary layer response to harmonic oscillations associated with a travelling wave imposed on an otherwise constant freestream velocity and convected in the freestream direction. The tests covered oscillation frequencies of 4-12 Hz for freestream amplitudes of up to 11% of the mean velocity. Additional steady flow measurements were used to infer the quasi-steady response to freestream oscillations. The results show a welcome insensitivity of the mean flow and turbulent intensity distributions to the freestream oscillations tested. An approximate analysis based on these results has been developed. It is probably of limited validity but it does provide a useful guide to the physical processes involved. The effects on boundary layer response of varying the travelling wave convection velocity and frequency of oscillation are illustrated by the analysis and show a behaviour broadly similar to that of laminar boundary layers. The travelling wave convection velocity exhibits a dominant influence on the turbulent boundary layer response to freestream oscillations.


2001 ◽  
Vol 428 ◽  
pp. 1-27 ◽  
Author(s):  
M. B. JONES ◽  
IVAN MARUSIC ◽  
A. E. PERRY

An experimental and theoretical investigation of turbulent boundary layers developing in a sink-flow pressure gradient was undertaken. Three flow cases were studied, corresponding to different acceleration strengths. Mean-flow measurements were taken for all three cases, while Reynolds stresses and spectra measurements were made for two of the flow cases. In this study attention was focused on the evolution of the layers to an equilibrium turbulent state. All the layers were found to attain a state very close to precise equilibrium. This gave equilibrium sink flow data at higher Reynolds numbers than in previous experiments. The mean velocity profiles were found to collapse onto the conventional logarithmic law of the wall. However, for profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was observed near the buffer region, whereas the mean velocity profiles measured with a normal hot wire did not exhibit this deviation from the logarithmic law. As the layers approached equilibrium, the mean velocity profiles were found to approach the pure wall profile and for the highest level of acceleration Π was very close to zero, where Π is the Coles wake factor. This supports the proposition of Coles (1957), that the equilibrium sink flow corresponds to pure wall flow. Particular interest was also given to the evolutionary stages of the boundary layers, in order to test and further develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative agreement with the experimental results was found after slight modification of their original closure equation.


1992 ◽  
Vol 114 (4) ◽  
pp. 559-565 ◽  
Author(s):  
F. J. Pierce ◽  
J. Shin

The growth and development of a horseshoe vortex system in an incompressible, three-dimensional turbulent junction flow were investigated experimentally. A streamlined cylinder mounted with its axis normal to a flat surface was used to generate the junction vortex flow. The flow environment was characterized by a body Reynolds number of 183,000, based on the leading edge diameter of the streamlined cylinder. The study included surface flow visualizations, surface pressure measurements, and mean flow measurements of total pressure, static pressure, and velocity distributions in three planes around the base of the streamlined cylinder, and in two planes in the wake flow. Some characterizations of vortex properties based on the measured mean cross-flow velocity components are presented. The results show the presence of a single large, dominant vortex, with strong evidence of a very small corner vortex in the junction between the cylinder and the flat surface. The center of the dominant vortex drifts away from both the body and the flat surface as the flow develops along and downstream of the body. The growth and development of the core of the large, dominant vortex are documented.


2008 ◽  
Vol 595 ◽  
pp. 323-339 ◽  
Author(s):  
L. I. LANGELANDSVIK ◽  
G. J. KUNKEL ◽  
A. J. SMITS

Mean flow measurements are obtained in a commercial steel pipe with krms/D = 1/26 000, where krms is the roughness height and D the pipe diameter, covering the smooth, transitionally rough, and fully rough regimes. The results indicate a transition from smooth to rough flow that is much more abrupt than the Colebrook transitional roughness function suggests. The equivalent sandgrain roughness was found to be 1.6 times the r.m.s. roughness height, in sharp contrast to the value of 3.0 to 5.0 that is commonly used. The difference amounts to a reduction in pressure drop for a given flow rate of at least 13% in the fully rough regime. The mean velocity profiles support Townsend's similarity hypothesis for flow over rough surfaces.


1990 ◽  
Vol 34 (04) ◽  
pp. 225-252
Author(s):  
Y. Toda ◽  
F. Stern ◽  
I. Tanaka ◽  
V. C. Patel

Results are presented from a towing-tank experiment of propeller-hull interaction conducted in order to provide detailed documentation of the complete flow field appropriate both for explicating the flow physics and validating computational methods. Mean-velocity and pressure field measurements were made for the with-and without-propeller conditions for the Series 60 CB = 0.6 hull form at numerous stations both upstream and downstream of the propeller and in the near-wake region. Surface-pressure distributions and wave profiles were measured for both conditions. Resistance and self-propulsion tests were also conducted. The experimental equipment and procedures are described, and the results are discussed to point out the essential differences between the flows with and without propeller. The results are analyzed to assess the nature of the interaction between the propeller and the hull boundary layer and wake. To this end, use is made of a propeller-performance program with both nominal and effective inflows. It is shown that most features of the interaction can be explained as a direct consequence of the propeller loading resulting from its operation with a three-dimensional nonuniform inflow.


Sign in / Sign up

Export Citation Format

Share Document