Optimal Tracking Controller Design for Invariant Dynamics Direct-Drive Arms

1986 ◽  
Vol 108 (4) ◽  
pp. 360-365 ◽  
Author(s):  
H. A. Pak ◽  
P. J. Turner

This paper presents an optimal solution to the problem of tracking controller design for a category of direct-drive robot arms, mechanically constructed to have invariant and decoupled joint actuator dynamics. The controller acts on joint actuators consisting of d.c. servo motors driven via servo amplifiers containing an analog current feedback loop. For good tracking behavior, the controller uses future reference positions of a joint to anticipate the changes in reference velocity. An explicit acceleration feedforward term is avoided improving the power to noise ratio of the control signal. For good regulation behavior, the controller uses position and velocity feedback. An integral of error term is also avoided, reducing the probability of the occurrence of limit cycle oscillations caused by saturation of the actuator torque rating. The correlations between the classical and the optimal design parameters are discussed using transient response analysis followed by experimental observations.

1994 ◽  
Vol 116 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Tsu-Chin Tsao

This paper presents an approach for optimal digital feed-forward tracking controller design. The tracking problem is formulated as a model matching problem, in which the distance between a specified tracking reference model and the achievable tracking performance by feedforward compensation is minimized. Desired input/output characteristics, finite length preview action, tracking of specific classes of constrained signals, time domain reference signal velocity or acceleration bound, and frequency domain weighting are conveniently incorporated in the proposed controller design and their roles in tracking performance are discussed. The tracking error bound is also explicitly expressed in terms of the controller design parameters. An l1 norm optimal tracking controller is proposed as a solution to the mechanical tolerance control problem. A motion control example illustrates the design approach and several aspects of the resulting optimal feedforward controller, including the optimality of the zero phase error tracking controller.


2016 ◽  
Vol 21 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Zhongcai Zhang ◽  
Yuqiang Wu

This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment.


Author(s):  
Ehsan Hashemi ◽  
Maani Ghaffari Jadidi

The purpose of this investigation is to suggest and examine a trajectory follower control system for linear discrete dynamic model of omni-directional mobile robots to reach a controller with optimal inputs for drivers. Introducing optimal controllers for multi input-multi output control systems in acceleration and deceleration maneuvers to track a specified path is one of essential subjects for motion study of omni-directional mobile robots. Regulated drivers’ rotational velocities and torques greatly affect the ability of these robots to perform trajectory planner tasks. Moreover, environmental influencing factors shall also be considered in such robot models for accurate path planning. Presented tracking control system in this article provides an optimal solution to minimize differences between reference trajectory and system output in the lately developed simulated model. Trajectory following system together with implemented kinematic and dynamic modeling for an optimal controller to satisfy the path planning prerequisites is mainly discussed in this paper in several sections. Main topics presented and discussed in this article are considerable improvements in simulation of the newly optimized controller by Linear Quadratic Regulator and Tracking. Utilizing the new approach on tracking controller design results in the more precise and appropriate tracking behavior of omni-directional mobile robots as the simulation and experimental results confirm this issue.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ayaz Ahmad ◽  
L. Rajaji ◽  
A. Iqbal

AbstractDistributed generators are playing a vital role in supporting the grid in ever-increasing energy demands. Grid code regulation must be followed when integrating the photovoltaic inverter system to the grid. The paper investigates and analyzes a controller model for grid-connected PV inverters to inject sinusoidal current to the grid with minimum distortion. To achieve better tracking and disturbance rejection, a DSP-based current controller is designed with LCL filter. The controller gets the current feedback from the grid, compares it with reference current, and calculates duty cycle to generate PWM pulses to trigger H-bridge converters. The grid voltage is loaded to the initial value in proposed PR controller to ensure the initial inverter voltage to match the grid voltage. The paper presents a novel current controller algorithm for grid-connected inverter system, and simulation is done. A detailed analysis has been carried out to validate the proposed design algorithm. Experimental implementation of the current controller in the DC/AC converter circuits with an LCL filter is done for 5.4 kW to validate and match the simulation model.


2021 ◽  
Vol 11 (13) ◽  
pp. 5934
Author(s):  
Georgios Papaioannou ◽  
Jenny Jerrelind ◽  
Lars Drugge

Effective emission control technologies and novel propulsion systems have been developed for road vehicles, decreasing exhaust particle emissions. However, work has to be done on non-exhaust traffic related sources such as tyre–road interaction and tyre wear. Given that both are inevitable in road vehicles, efforts for assessing and minimising tyre wear should be considered. The amount of tyre wear is because of internal (tyre structure, manufacturing, etc.) and external (suspension configuration, speed, road surface, etc.) factors. In this work, the emphasis is on the optimisation of such parameters for minimising tyre wear, but also enhancing occupant’s comfort and improving vehicle handling. In addition to the search for the optimum parameters, the optimisation is also used as a tool to identify and highlight potential trade-offs between the objectives and the various design parameters. Hence, initially, the tyre design (based on some chosen tyre parameters) is optimised with regards to the above-mentioned objectives, for a vehicle while cornering over both Class A and B road roughness profiles. Afterwards, an optimal solution is sought between the Pareto alternatives provided by the two road cases, in order for the tyre wear levels to be less affected under different road profiles. Therefore, it is required that the tyre parameters are as close possible and that they provide similar tyre wear in both road cases. Then, the identified tyre design is adopted and the optimum suspension design is sought for the two road cases for both passive and semi-active suspension types. From the results, significant conclusions regarding how tyre wear behaves with regards to passenger comfort and vehicle handling are extracted, while the results illustrate where the optimum suspension and tyre parameters have converged trying to compromise among the above objectives under different road types and how suspension types, passive and semi-active, could compromise among all of them more optimally.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 40706-40715
Author(s):  
Mohammad Reza Satouri ◽  
Abolhassan Razminia ◽  
Saleh Mobayen ◽  
Pawel Skruch

Sign in / Sign up

Export Citation Format

Share Document