Frequency Domain Stability Criterion for Vibration Control of the Bernoulli-Euler Beam

1988 ◽  
Vol 110 (3) ◽  
pp. 303-307 ◽  
Author(s):  
Yossi Chait ◽  
Clark J. Radcliffe ◽  
C. R. MacCluer

A new single-input single-output frequency domain stability criterion for distributed parameter systems is illustrated by application to feedback control of a Bernoulli-Euler beam. The system is modeled using an infinite partial fraction expansion, while the control design is based on a truncated model. The Nyquist plot is shown to lie within a “tube of uncertainty” of the plot for the truncated model. Several numerical examples illustrate the power and simplicity of this criterion.

1988 ◽  
Vol 110 (4) ◽  
pp. 436-440 ◽  
Author(s):  
B. M. Mohan ◽  
K. B. Datta

In this paper, one shot operational matrix for repeated integration of the shifted Legendre polynomial basis vector is developed and double-shifted Legendre series is introduced to approximate functions of two independent variables. Then using these, systematic algorithms for the identification of linear time-invariant single input-single output continuous lumped and distributed parameter systems are presented. Illustrative examples are provided with satisfactory results.


1970 ◽  
Vol 92 (2) ◽  
pp. 377-384 ◽  
Author(s):  
H. C. Khatri

For distributed parameter systems, open-loop stability in the sense of bounded outputs for bounded inputs, and closed-loop asymptotic stability are considered. Frequency domain stability criteria for open and closed-loop distributed parameter systems are given. The closed-loop stability criterion is similar to V. M. Popov’s stability criterion for lumped systems. The criteria are limited to those linear, time-invariant systems whose dynamics can be described by a transfer function which is the ratio of the multiple transform of the output to the multiple transform of the input. The input may or may not be distributed. An example is given to illustrate the applications of the stability criteria.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Juan Garrido ◽  
Mario L. Ruz ◽  
Fernando Morilla ◽  
Francisco Vázquez

Multiloop proportional-integral-derivative (PID) controllers are widely used for controlling multivariable processes due to their understandability, simplicity and other practical advantages. The main difficulty of the methodologies using this approach is the fact that the controllers of different loops interact each other. Thus, the knowledge of the controllers in the other loops is necessary for the evaluation of one loop. This work proposes an iterative design methodology of multiloop PID controllers for stable multivariable systems. The controllers in each step are tuned using single-input single-output (SISO) methods for the corresponding effective open loop process (EOP), which considers the interaction of the other loops closed with the controllers of the previous step. The methodology uses a frequency response matrix representation of the system to avoid process approximations in the case of elements with time delays or complicated EOPs. Consequently, different robustness margins on the frequency domain are proposed as specifications: phase margin, gain margin, phase and gain margin combination, sensitivity margin and linear margin. For each case, a PID tuning method is described and detailed for the iterative methodology. The proposals are exemplified with two simulations systems where the obtained performance is similar or better than that achieved by other authors.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 839 ◽  
Author(s):  
Luis F. Cantú ◽  
Pedro Mendiola ◽  
Álvaro A. Domínguez ◽  
Alberto Cavazos

Two robust mutlivariable controllers, H∞ and a decentralized quantitative feedback theory (QFT), are designed in the frequency domain for the 2 × 2 looper system in a steel hot rolling mill to keep stability in the presence of parametric uncertainties. The H∞ controller is designed by using the mixed sensitivity approach, while the multivariable decentralized QFT is designed by the extension of the sequential loop closing method presented elsewhere. Stability robustness conditions are verified in the frequency domain, while simulations in time domain are carried out to evaluate the controllers and compare their performance along with that of proportional + integral (PI) and single input single output (SISO) QFT controllers designed earlier. The QFT controller shows the best balance among the performance indicators analyzed here; however, at the expenses of using higher power in one of the control inputs.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Varun Srivastava ◽  
Abhilash Mandloi ◽  
Dhiraj Kumar Patel

AbstractFree space optical (FSO) communication refers to a line of sight technology, which comprises optical source and detector to create a link without the use of physical connections. Similar to other wireless communication links, these are severely affected by losses that emerged due to atmospheric turbulence and lead to deteriorated intensity of the optical signal at the receiver. This impairment can be compensated easily by enhancing the transmitter power. However, increasing the transmitter power has some limitations as per radiation regulations. The requirement of high transmit power can be reduced by employing diversity methods. This paper presents, a wavelength-based diversity method with equal gain combining receiver, an effective technique to provide matching performance to single input single output at a comparatively low transmit power.


Sign in / Sign up

Export Citation Format

Share Document