Volume 1B: Offshore Technology
Latest Publications


TOTAL DOCUMENTS

58
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845387

Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Author(s):  
Arya Majed ◽  
Phil Cooper

This paper presents an investigation of the still water sink trajectories of an accidentally dropped Christmas Tree (XT). A 3D coupled nonlinear dynamics/hydrodynamics model of the XT is constructed and simulations executed from surface to seabed. XT initial water entry orientations are randomly varied in a Monte-Carlo simulation to predict the seabed impact zone. Still water simulation results are compared to simplified cone-angle type method predictions. The effect of XT flat panels on excursion mitigation is investigated. Finally, the influence of non-uniform current effects is studied.


Author(s):  
Rodrigo A. Barreira ◽  
Vinicius L. Vileti ◽  
Joel S. Sales ◽  
Sergio H. Sphaier ◽  
Paulo de Tarso T. Esperança

A new conceptual design of a deepwater MONOBUOY, named DeepWater MultiColumn Buoy (DWMCB), patent PCT/BR2011/000133, was developed by PETROBRAS/CENPES. The DWMCB was designed to be part of an offloading system for a Spread Moored Floating Production Offloading Unit (FPSO). The offloading system principle consists of Oil being exported from the FPSO to a Shutle tanker passing through Offloading Oil Lines (OOLs) that are supported by the DWMCB. The system is designed to operate at a water depth of 2,200 meters, with expected in site life duration of 25 years. The geometry of DWMCB was defined after an optimization process in order to minimize its motions. This paper describes the development of this concept and discusses the results from some design verifications done with the help of a model tests campaign. An equivalent traditional shaped monobuoy was also tested for comparison purposes.


Author(s):  
Ivan Ćatipović ◽  
Nastia Degiuli ◽  
Andreja Werner ◽  
Većeslav Čorić ◽  
Jadranka Radanović

Towing as a specific type of sea transport is often used for installing objects for drilling and exploitation of underwater gas and oil wells. Also, towing proved to be a cost-effective solution for the installation of the offshore wind turbine electric generators at sea locations. Because of the mass of these objects the need for towing increases progressively. Time domain numerical model for the wave-induced motions of a towed ship and the towline tension in regular head seas is presented in this paper. For the sake of simplicity, one end of the towing line is attached to ship’s bow and another end has prescribed straight line motion. All considerations are done in the vertical plane so the ship is modeled as a rigid body with three degrees of freedom. Hydrodynamic loadings due to waves are taken into account along with added mass and damping. Dynamics of the towing line is described by finite elements. Due to the nonlinear properties of the problem calculations are done in time domain. Comparison of the obtained numerical results is made with previously published results.


Author(s):  
Christoph Läsche ◽  
Jan Pinkowski ◽  
Sebastian Gerwinn ◽  
Rainer Droste ◽  
Axel Hahn

Safety and dependability are major design objectives for offshore operations such as the construction of wind farms or oil and gas exploration. Today processes and related risks are typically described informally and process specification are neither reusable nor suitable for risk assessment. Here, we propose to use a specification language for processes. We integrate this specification language in a generic modeling approach in combination with an analysis tool and a tool to construct health, safety and environment (HSE) plans — a mandatory document for granting a construction/operation permit. Specifically, for each planned scenario a process is modeled, describing the detailed operation of the involved actors as well as the interaction with resources and environmental conditions. We enrich this process model with hazardous events which is facilitated by integration with an offshore operation generic hazard list, thereby giving access to expert knowledge for the specific situation to be planned. This in turn allows us to perform an automatic quantitative risk assessment using fault tree analysis. We exemplify our approach on a standard offshore operation of personnel transfer from an offshore building to another naval unit by modeling, annotating with hazards, performing the fault-tree analysis, and finally generating HSE plans.


Author(s):  
Myung-Il Roh ◽  
Seong-Ho Seo ◽  
Hyun-Kyoung Shin ◽  
Nam-Kug Ku ◽  
Sol Ha ◽  
...  

The weight information of a floating offshore plant, such as an FPSO, is one of the important data to estimate the amount of production material and to determine the production method for its construction. In addition, the weight information is a key factor which affects in the building cost and production period of the offshore plant. Although the importance of the weight has long been recognized, the weight has been roughly estimated by using the existing design and production data, and designer’s experience. To improve this task, a simplified model for the weight estimation of the offshore plant using the statistical method was developed in this study. To do this, various past records to estimate the weight of the offshore plant were collected through the literature survey, and then the correlation analysis and the multiple regression analysis were performed to develop the simplified model for the weight estimation. Finally, to evaluate the applicability of the developed model, it was applied to some examples of the weight estimation of topsides of the offshore plant. The results showed that the developed model can be applied the weight estimation process of the offshore plant at the early design stage.


Author(s):  
Claudio A. Rodríguez ◽  
Paulo T. T. Esperança ◽  
Mário Moura ◽  
Jacques Raigorodsky

Recently, an experimental campaign was carried out to assess the feasibility of the launching operation of two jack-up units using a barge as the launching platform. This experimental study was divided in four stages. In stages 1 to 3, a series of preliminary model tests were performed in order to provide scientific understanding of the mechanics of the operation, and investigate systematically the influence of launching parameters. The experimental approach developed for testing this operation and the results of the preliminary launching tests have been discussed in detail in a previous paper [1]. Based on the analyses of the experimental results of stages 1 to 3 and, the results of numerical simulation tools, in stage 4, a final launching condition was designed and a new set of model tests were specified to check the safety of the operation. This paper presents the results and analyses of the experimental tests in stage 4. The conditions tested in this stage covered the expected real launching condition and possible deviations in some launch parameters. The tests results include the 6-DOF motions and trajectories of the launched jack-up and the launch barge, and the reaction forces on the barge rocker arms. Later on, the success of the launching operations of P-59 and P-60 jack-up units confirmed the experimental investigation results and the feasibility of this novel launching procedure. Furthermore, it can be concluded that the experimental approach efficiently served as a tool for the assessment of high risk operations.


Author(s):  
Vinicius L. Vileti ◽  
Albino Ribeiro Neto ◽  
Joel S. Sales ◽  
Paulo de Tarso T. Esperança ◽  
Sergio H. Sphaier ◽  
...  

The paper describes the development of a training simulator for boats used on Oil Spill response at sea. The simulator models the dynamics of tug boats pulling an oil boom under waves, wind and current. The boom is modeled as a flexible line connected by lumped masses and its flotation characteristics and loads are calculated by Morison equation. A simplified model is used to simulate the oil itself and its interface with the boom line. The verification process was applied and its outcomes are discussed. Also, some case study scenarios are presented and the results are used to evaluate the applicability of the simulator as a training system.


Author(s):  
Fernando J. R. Teixeira ◽  
Anderson T. Oshiro ◽  
Eduardo A. Tannuri

This paper presents a methodology in order to perform a drift off calculation for drillships according to given parameters such as: environmental conditions and water depth. Drift off occurs when there is insufficient thruster force so that the vessel is drifted away from the target position by the environmental forces. For a safe operational drillship it is expected that the drifting off will be resumed in due time when blackout recovery system starts running and, therefore, enough thrust takes place. Water depth plays an important role when considering the default maximum release of Lower Flex Joint (LFJ) angle for physically disconnecting, which is 10 degrees in the majority of suppliers. This methodology is intended to be applied to drillship design, by comparing the time to stop drifting and the distance from the reference point after a total blackout occurs. Electrical generators sets installed in drillships are designed to work with extreme environmental conditions. Since there is an excess of installed power for the majority of the operational time, drillships often operate with all high voltage busbars connected to each other improving engine efficiency, decreasing levels of pollution emissions and reducing maintenance. The use of this electrical power configuration is possible because there is no need to turn on all generators at the same time, but only the ones that are needed on that particular moment. However, when a single failure such as a short circuit occurs and the system is not prepared to disable and segregate the failure, all electrical system will crash, causing a total blackout and the drillship will start to drift off. The drifting off time was obtained by numerical simulations conducted by modeling a standard drillship using time domain software. The model took into consideration the vessel hydrodynamics under environmental conditions (wind, current and wave), the drag force in marine drilling riser, and the thrusters in Dynamic Positioning (DP) operation. The simulation is divided into three steps: First, the behavior of the DP system in full operation is simulated until system is stable. After that, all thrusters are turned off to simulate a total blackout. Finally, since the ship will not stop immediately because of its inertia, a time range for the ship’s inertia was also considered and this time is added to the pre-established blackout duration. The conclusion of the study shows how parameters as water depth, environmental conditions, and blackout recovery time affect the necessary time to stop drifting off, so as to foresee that after a total blackout the standard drillship will remain in safe limits.


Author(s):  
Charles Monroy ◽  
Guillaume de Hauteclocque ◽  
Xiao-Bo Chen

This paper presents numerical results of the monodirectional second order forces acting on a rudimentory FPSO hull shape. The exact calculation of second order loads through potential theory is computationally challenging and requires the evaluation of a slowly-convergent free surface integral. In practice, this integral is often neglected as it is widely assumed that it does not contribute significantly to the overall load and few commercial seakeeping software propose this option anyway. An even rougher and widely used approximation consists in expressing the second order loads occuring at a non-zero difference frequency from the mean drift loads. It is called the Newman’s approximation; it enables serious CPU time gains, but at the cost of a worse accuracy. The object of this paper is to investigate on a simple case the accuracy of each of these two approximations (without the free surface integral and Newman’s approximation) and the influence of parameters such as the water depth and the sea state wave length. Depending on the resonant period of the considered mooring system, it may give some insight on a good compromise between CPU time and accuracy when choosing the way of determing the second order loads.


Sign in / Sign up

Export Citation Format

Share Document