scholarly journals Identification of Nonlinear Vibrating Structures: Part I—Formulation

1987 ◽  
Vol 54 (4) ◽  
pp. 918-922 ◽  
Author(s):  
S. F. Masri ◽  
R. K. Miller ◽  
A. F. Saud ◽  
T. K. Caughey

A self-starting multistage, time-domain procedure is presented for the identification of nonlinear, multi-degree-of-freedom systems undergoing free oscillations or subjected to arbitrary direct force excitations and/or nonuniform support motions. Recursive least-squares parameter estimation methods combined with non-parametric identification techniques are used to represent, with sufficient accuracy, the identified system in a form that allows the convenient prediction of its transient response under excitations that differ from the test signals. The utility of this procedure is demonstrated in a companion paper.

2021 ◽  
Vol 11 (11) ◽  
pp. 4972
Author(s):  
Rohan Shah ◽  
Timothy Sands

Adaptive and learning methods are proposed and compared to control DC motors actuating control surfaces of unmanned underwater vehicles. One type of adaption method referred to as model-following is based on algebraic design, and it is analyzed in conjunction with parameter estimation methods such as recursive least squares, extended least squares, and batch least squares. Another approach referred to as deterministic artificial intelligence uses the process dynamics defined by physics to control output to track a necessarily specified autonomous trajectory (sinusoidal versions implemented here). In addition, one instantiation of deterministic artificial intelligence uses 2-norm optimal feedback learning of parameters to modify the control signal, while another instantiation is presented with proportional plus derivative adaption. Model-following and deterministic artificial intelligence are simulated, and respective performance metrics for transient response and input tracking are evaluated and compared. Deterministic artificial intelligence outperformed the model-following approach in minimal peak transient value by a percent range of approximately 2–70%, but model-following achieved at least 29% less error in input tracking than deterministic artificial intelligence. This result is surprising and not in accordance with the recently published literature, and the explanation of the difference is theorized to be efficacy with discretized implementations.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3653
Author(s):  
Lilia Sidhom ◽  
Ines Chihi ◽  
Ernest Nlandu Kamavuako

This paper proposes an online direct closed-loop identification method based on a new dynamic sliding mode technique for robotic applications. The estimated parameters are obtained by minimizing the prediction error with respect to the vector of unknown parameters. The estimation step requires knowledge of the actual input and output of the system, as well as the successive estimate of the output derivatives. Therefore, a special robust differentiator based on higher-order sliding modes with a dynamic gain is defined. A proof of convergence is given for the robust differentiator. The dynamic parameters are estimated using the recursive least squares algorithm by the solution of a system model that is obtained from sampled positions along the closed-loop trajectory. An experimental validation is given for a 2 Degrees Of Freedom (2-DOF) robot manipulator, where direct and cross-validations are carried out. A comparative analysis is detailed to evaluate the algorithm’s effectiveness and reliability. Its performance is demonstrated by a better-quality torque prediction compared to other differentiators recently proposed in the literature. The experimental results highlight that the differentiator design strongly influences the online parametric identification and, thus, the prediction of system input variables.


2021 ◽  
Author(s):  
Liqun Jiang ◽  
Ronglin Sun ◽  
Xing Liang

<p>Protection and management of groundwater resources demand high-resolution distributions of hydraulic parameters (e.g., hydraulic conductivity (K) and specific storage (Ss)) of aquifers. In the past, these parameters were obtained by traditional analytical solutions (e.g., Theis (1935) or Cooper and Jacob (1946)). However, traditional methods assume the aquifer to be homogeneous and yield the equivalent parameter, which are averages over a large volume and are insufficient for predicting groundwater flow and solute transport process (Butler & Liu, 1993). For obtaining the aquifer heterogeneity, some scholars have used kriging (e.g., Illman et al., 2010) and hydraulic tomography (HT) (e.g., Yeh & Liu, 2000; Zhu & Yeh, 2005) to describe the K distribution.</p><p>In this study, the laboratory heterogeneous aquifer sandbox is used to investigate the effect of different hydraulic parameter estimation methods on predicting groundwater flow and solute transport process. Conventional equivalent homogeneous model, kriging and HT are used to characterize the heterogeneity of sandbox aquifer. A number of the steady-state head data are collected from a series of single-hole pumping tests in the lab sandbox, and are then used to estimate the K fields of the sandbox aquifer by the steady-state inverse modeling in HT survey which was conducted using the SimSLE algorithm (Simultaneous SLE, Xiang et al., 2009), a built-in function of the software package of VSAFT2. The 40 K core samples from the sandbox aquifer are collected by the Darcy experiments, and are then used to obtain K fields through kriging which was conducted using the software package of Surfer 13. The role of prior information on improving HT survey is then discussed. The K estimates by different methods are used to predict the process of steady-state groundwater flow and solute transport, and evaluate the merits and demerits of different methods, investigate the effect of aquifer heterogeneity on groundwater flow and solute transport.</p><p>According to lab sandbox experiments results, we concluded that compared with kriging, HT can get higher precision to characterize the aquifer heterogeneity and predict the process of groundwater flow and solute transport. The 40 K fields from the K core samples are used as priori information of HT survey can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.</p>


Sign in / Sign up

Export Citation Format

Share Document