Buckling of Locally Loaded Isotropic, Orthotropic, and Composite Cylindrical Shells

1988 ◽  
Vol 55 (2) ◽  
pp. 425-429
Author(s):  
Wei Xiao ◽  
Shun Cheng

This paper incorporates an analysis of the stability of orthotropic or isotropic cylindrical shells subjected to external pressure applied over all or part of their surfaces. An eighth-order governing equation for buckling of orthotropic, isotropic, and composite cylindrical shells is deduced. This governing differential equation can facilitate the analysis and enable us to resolve the buckling problem. The formulas and results, deduced for the first time in this paper, may be readily applied in determining critical loads for local loading of orthotropic, isotropic, and composite cylindrical shells.

1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


1982 ◽  
Vol 49 (4) ◽  
pp. 843-848 ◽  
Author(s):  
J. B. Greenberg ◽  
Y. Stavsky

A general method of solution, based on a complex finite Fourier transform, is adopted for the stability and vibration analysis of compressed, aeolotropic, composite cylindrical shells. A major feature of the solution method is its ability to handle both uniform and nonuniform conditions that hold at the boundaries of finite-length cylindrical shells. For the various shells investigated, an optimum winding angle was found for which a maximum frequency response and highest critical buckling load is attainable. Similar optimization was also discovered to be possible by controlling both/either shell heterogeneity and/or fiber orientation.


2018 ◽  
Vol 877 ◽  
pp. 453-459
Author(s):  
B. Angelina Catherine ◽  
R.S. Priyadarsini

Buckling is a prominent condition of instability caused to a shell structure as a result of axial loadings. The process of buckling becomes more complex while analyzing thin walled structures like shells. Today such thin walled laminated composite shells are gaining more importance in many defense and industrial applications since they have greater structural efficiency and performance in relation to isotropic structures. Comprehensive understanding of the buckling response of shell structures is necessary to assure the integrity of these shells during their service life. The presence of defects, such as cracks, may severely compromise their buckling behavior and jeopardize the structural integrity. This work aims in conducting numerical analysis of cracked GFRP (Glass fibre-reinforced polymer) composite cylindrical shells under combined loading to study the effect of crack size on the buckling behavior of laminated composite cylindrical shells with different lay-up sequences. The numerical analyses were carried out using the finite element software, ABAQUS in order to predict the buckling behaviour of cracked laminated composite cylinders subject to different combinations of axial compression, torsion, internal pressure and external pressure from the interaction buckling curves.


1997 ◽  
Vol 19 (2) ◽  
pp. 65 ◽  
Author(s):  
WS Johnson ◽  
JE Masters ◽  
DW Wilson ◽  
L Minnetyan ◽  
CC Chamis

Sign in / Sign up

Export Citation Format

Share Document